Journey to freedom

CORENTIN

Whoam | ¢

Security researcher and CTO of REverse Tactics.

Specialized in low-level software reverse engineering and exploit,
and in particular:

CORENTIN

Kernel and OS security
Hypervisors

Embedded Software

© 2025 REverse Tactics. All Rights Reserved.

https://www.reversetactics.com/

?

"WisleXelap

CEO and founder of REverse Tactics.

Security researcher specialized in Reverse Engineering &
Vulnerability Research. In particular:

JEFI firmware

BRUNO

Kernel & virfualization.

Embedded Software

© 2025 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

At Pwn20wn we chained a VirfualBox VM Escape with a LPE
Windows

© 2025 REverse Tactics. All Rights Reserved.

Pwn20wn rules (virtualization)

Exploit needs to demonstrate Virtual Machine escape (VME)
Start with administrator/root privileges in the guest (Linux or Windows)

Must demonstrate code execution on the host
Up-to-date Windows for Virtualbox

Can be chained with elevation of privieges on the host for a bonus

About configuration
Virtual machines can have a great variety of configurations
Big impact on the available attack surface

Doesn’t have to target the default configuration
But must represent a redalistic real life scenario

The organizer decides

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

Oracle VirtualBox

Popular hypervisor
Open source

Free
Easy to use

Working on Windows / Linux / MacOS

Maintained by Oracle

No team 100% dedicated to VirfualBox's security

© 2025 REverse Tactics. All Rights Reserved.

A few definitions

Hypervisor: Software that manages one or mulfiple virtual machines
on a single physical computer

Here, Virfualbox

Host: Operating system running the hypervisor
Here, Windows is running Virtualbox

Guest: Operating system running Iin the virtual machine

GPA: Guest Physical Address
An address in the physical memory view of the guest

Paravirtualization: virtualization technigue
Guest OS is modified to communicate directly with the hypervisor

Improved performances

© 2025 REverse Tactics. All Rights Reserved.

Communication channels

Exchange data through shared memory

Direct Memory Access (DMA)
Trigger specific actions through
Port mapped Input/Output (PMIO)
Privileged instructions: IN / OUT
Memory Mapped IO (MMIO)
Read / write In specific physical memory ranges
Hypercalls

Specific interfaces used with paravirtualized devices

© 2025 REverse Tactics. All Rights Reserved.

Setup

Chipsec

Framework for testing the security of hardware or system firmware (UEFI / BIOS)

Already developed drivers for Windows and Linux that exposes privileged
operations

Allocate / Read / Write physical memory

Execute privileged instructions
N / OUT (PMIO)

Hypercalls

Read / Write in PCI

Has a Python API !
OS agnostic !

© 2025 REverse Tactics. All Rights Reserved.

Setup

from chipsec import chipset
cs = chipset.cs().basic_init_with_helpexr()
Allocate and write into physical memory

phys_addr = cs.mem.alloc_physical_mem(@xlee@, @xffffffff)
cs.mem.write_physical_mem(phys_addr, b'A'*0x10@0)

Trigger MMIO, provide DMA address
mmio_data = phys_addr.to_bytes(4, byteorder='little')
cs.mmio.write_MMIO_reg(@xbcoooeed, @, mmlo_data, 4)

read result
data = cs.mem.read_physical_mem(phys_addr, ©2x10@@)

© 2025 REverse Tactics. All Rights Reserved.

Treasure map

Windows kernel

High Integrity level Medium Integrity Level

VirtualBox.exe

Linux Virtual Machine
L 4
[S

Windows
userspace

© 2025 REverse Tactics. All Rights Reserved.

A good |

Ve

FInding the map

ourney always s

‘art with a good state of the art

f'YI

mportant step, No

MUST put time Info it

Goals

" fo neglect

FiInd generic informatfion on the target

Public documentation

Source code organization

s It fuzzed ¢

Study previous vulnerabllities

Understand common attack surfaces

Note exploit fechnigues

Extfract vulnerable patterns

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21988

Uninitialized memory read in VirtualBox

Found and exploited by @MajorTomSec of Synacktiv for Pwn20wn 2023
Bug affecting PGMPhysRead

Function responsible for reading the physical memory of the guest to o

host buffer

See It as an equivalent of copy_from_user or memcpy

The source address is a GPA

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, void *pvBuf, si

pVM
GCPhys
pvBuf
cbRead
enmOTrigin

© 2025 REverse Tactics. All Rights Reserved.

=

’e_T cbRead, PGMACCESSORIGIN enmOrigin)

CVE-2023-21988

This function will split the access page by page

Because each guest physical page can be located at a different place in
host’'s memory

IT also handle MMIO accesses

It one of the GPA Is registered as a MMIO, call the appropriate MMIO
handler

If any error occurs during the MMIO handling fill up the output buffer and
return

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

{

f{/ [...] Loop on each page
{
size_t cb = GQUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
if (cb > cbRead)
cb = cbRead:
/f Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
// call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrictl);
else
{
'* Set the remaining buffer to a known value.
memset (pvBuf, @xff, cb);
PGM_UNLOCK (pVM) ;
return rcstrict2;
}
J
..
]

Note: code was simplified

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

f

f{/ [...] Loop on each page
{
size_t «cb = QUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ,
ifT (cb > cbRead)
cb = cbRead;
// Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
J
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pvM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin};
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS5_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2),
else
{
Set_the remaining huffer to a known value
memﬂet[pvﬂuf OxfT, ch];
PGM_UNLUCK [PV ; » Only calls memset for the current
return rcStrict2; .
} page size.
I- . .
TR » Remaining on the pvBuf buffer remains
}- uninifialized.

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21988

Bug allows to let some data uninifialized when reading from guest
ohysical memory

Requires to control the GPA to trigger an error

This Is a very common pattern

Requires to find a code that will write back this uninitialized data to the
guest

Found In the XHCI device

Impact:
Leak uninifialized memory from the host

Get some stack/heap pointers and defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

{

f{/ [...] Loop on each page
{
size_t «cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
if (cb > cbRead)
cb = cbRead:
' Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
1T (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
else
{
(*_Set _the remainino buffer to a known value.
memset (pvBuf, @xff, cb);
PGM_UNLUCK [pVM] ;
return rcstrict2;
}
]
..
I

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21988 - Patched

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, siz

I"|:I

_t cbRead, PGMACCESSORIGIN enmOrigin’

{
f{/ [...] Loop on each page
{
size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
1T (cb > cbRead)
ch = chRead,
f{ Is a MMIO Page
1T (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
" call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2),;
else
{
—Cet—the—temaining—buffes—4o a known value.
memﬂet[pvﬂuf @xTf, cbRead):
PGM_UNLOCK (pVM) ;
return rcsStrict2;
I
I
o]
7

© 2025 REverse Tactics. All Rights Reserved.

CVE-2023-21988 - Patchea

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin’
{

f{/ [...] Loop on each page
{
size_t «cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK],
if (cb > cbRead)
cb = cbRead:
f{ Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
1T (PGM_PHYS_RW_IS_SUCCESS[TICSTIICT.Z))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcstrict2); P What's happening there ¢
else
{
/* Set the remaining buffer to a known value.
memset(pvBuf, @xff, cbRead),
PGM_UNLOCK (pVM}) ;
return rcsStrict2;
}
I
Mol
¥

© 2025 REverse Tactics. All Rights Reserved.

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

© 2025 REverse Tactics. All Rights Reserved.

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

BACK(VBOXSTRICTRC) buslogicMMIORead(PPDMDEVINS pDevIns, vold *pvUser, RTGCPHYS off, wvoid *pv,

RT_NOREF (pDevIns, pvUser, off, pv, cb),

;|
e 5
F1 i

return VIN

© 2025 REverse Tactics. All Rights Reserved.

510

ch)

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

BACK(VBOXSTRICTRC) buslogicMMIORead(PPDMDEVINS pDevIns, vold *pvUser, RTGCPHYS off, wvoid *pv,

RT_NOREF (pDevIns, pvUser, off, pv, cb),

;|
e 5
F1 i

return VIN

MSG_FAILED(("MMIO Read: %RGp LB %u\n", off, cb)), Nope!

© 2025 REverse Tactics. All Rights Reserved.

510

ch)

CVE-2024-21121

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin’
{

f{/ [...] Loop on each page
{
1Ze_1 cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
if cb > cbRead)
cb = cbRead:
f{ Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcstrict2); p NO error during the callback
else
¢ __ , | » pVvBuUf still not inifialized
/* Set the remaining buffer to a known value. */
memset(pvBuf, @xff, cbRead),
PGM_UNLOCK { p¥M} ;
return rcsStrict2;
I
f
L]
I

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-2112]1

Found a variant of the bug

Can use the same exploit technigue as CVE-2023-21988

Requires to find specific MMIO read handlers

Must return a success without fully initializing the buffer

Must be registered with the flag IOMMMIO_FLAGS_READ_PASSTHRU
Allow the MMIO handler to be called for any size instead of only 1/2/4

The MMIO handler for the BusLogic device fits perfectly
Hard disk fechnology

We have our leak |
And can defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

Reaching high seas

Hypervisors have a HUGE code base, you can’t audit everything

Very time consuming to fully understand an aftack surface from top to
bottom

We don't have this fime | How to chose where to look ¢

Use knowledge acquired during SOTA to find “interesting” code
Vulnerabillity patterns
Attack surfaces with a lot of past bugs

Use tools |

grep
Find a list of things to look at deeper

Low quality code
Attack surfaces not identitied during SOTA

© 2025 REverse Tactics. All Rights Reserved.

Reaching high seas

But was not a great success on VirtualBox code base

Too much false positives
Vulnerabillities only accessible in the weirdest configurations

Non exploitable / reachable bugs

Code that felt weird but was fine

Spent too much time on those

But allowed me to explore a lot of different code
Acquired knowledge on the code base

Found interesting attack surfaces to look at from top to bottom !

© 2025 REverse Tactics. All Rights Reserved.

Reaching high seas

Declded to chose the VirtlO devices implementation
Specification for a paravirtualization intferface for multiple devices
Implemented in a lof of hypervisors

VirtualBox implements the VirtlO Disk and Network card

VirtualBox's implementation can be compared to others
And the code felt a bit weird...

© 2025 REverse Tactics. All Rights Reserved.

Reaching high seas

#1fdef VIRTIO_VBUF_ON_STACK
PVIRTQBUF pVirtqBuf = virtioCoreR3VirtgBufAlloc(),
1t (!pVirtqBuf)
{
LogRel(("Falled to allocate memory for VIRTQBUF\R"));
break, /* No point in trying to allocate memory for other descriptor chains */
}
int rc = virtioCoreR3VirtgAvalilBufGet (pDevIns, &pThis->Virtio, uVirtgNhbr,

pWorkerR3->auRedoDescs[1], pVirtgBuf),
#else /* IVIRTIO_VBUF_ON_STACK */
PVIRTQBUF pVirtqBuf;
rc = virtioCoreR3VirtgAvailBufGet (pDevIns, &pThis->Virtio, uVirtgNbr,
pWorkerR3->auRedoDescs[1], &pVirtgBuf);
#endif /* IVIRTIO_VBUF_ON_STACK */

© 2025 REverse Tactics. All Rights Reserved.

VirtflO queues

VirtlO Queues iIs a mechanism o send and receive data fo and from the guest

Implemented in the core of VirtlO

used by all VirtlO devices

Problematic: want to send a lof of data between guest and host

Cannot use a single configuous buffer of physical memory

A very common way to do this Is fo use a queue of segment descriptors

A segment represents a chunk of contiguous physical memory to use

Each segment is described by
A Guest Physical Address
A size

© 2025 REverse Tactics. All Rights Reserved.

VirtlO queue descriptors

Additional flags
VIRTQ_DESC_F_NEXT

The descriptor chain is not over

Get the next descriptor at index NIDX
VIRTQ_DESC _F WRITE

The buffer must be used only for writing

© 2025 REverse Tactics. All Rights Reserved.

VirtlO queue descriptors chain

Available Buffers Descriptor Queue Queue Size = N+1

IDX =0 IDX=N

GPA

SIZE N W NIDX N NIDX SIZE N W | NIDX

NIDX =N

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Function virtioCoreR3VirtqAvailBufGet

Responsible for parsing a descriptor chain

Place it in the VIRTQBUF passed in parameter

Contains a list of segments

typedef struct VIRTQBUF

GSEG aseqgsIn[1024] ;
SEG

, Gt aseqsout[10.24],;
} VIRTQBUF_T,

typedef struct VIRTIOSGSEG

uinté4_t GCPhys;
size_t cbSeq,
} VIRTIOSGSEG;

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

int virtioCoreR3VirtgAvailBufGet(PPDMDEVINS pDevIns, PVIRTIOCORE pVirtio, uintlé_t uVirtg,
uintl6_t uHeadIdx, PVIRTQBUF pVirtqBuf)

{

uint32_t cSegsIn, cSegsOut = @,
PVIRTIOSGSEG paSegsIn = pVirtgBuf-=aSegsIn,
PVIRTIOSGSEG paSegsOut = pVirtqBuf-=aSegsOut,

do
{
PVIRTIOSGSEG p5eq,
1T (cSegsIn + cSegsOut >= pVirtq->uQueueSize)

J
L

| Error log
break:

virtioReadDesc (pDevIns, pVirtio, pvVirtq, uDescIdx, &desc),

ff{ simplified version of the result
1T (desc.fFlags & VIRTQ_DESC_F_WRITE)
p5eq = &paSeqgsIn[cSegsIn++];
else
p5eq = &paSeqgsOut[cS5eqgsOut++];

pSeg->GCPhys = desc.GCPhysBuf,
pSeg->cbSeg = desc.cb;
uDescIdx = desc.uDescIdxNext:

} while (desc.fFlags & VIRTQ_DESC_F_NEXT),

VirtlO — VBox iImplementation

Avallable Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=N

GPA1l

SIZE O N |W | NIDX N NIDX

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT| |SIZE OUT SIZE
SIZE IN O SIZE IN 1 1023 OUT 1023

Host IN segment list list Size = 1024 Host OUT segment list List Size = 1024

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX =N

GPAO GPA 1

SIZE O N W | NIDX SIZE 1 N NIDX

GPA IN GPA OUT GPA OUT GPA
GPAIN O GPAIN 1 1023 OUT 1023

SIZE IN SIZE OUT| |SIZE OUT SIZE
SIZE IN O SIZEIN 1 1023 OUT 1023

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=1 IDX =N

GPAO GPA 1

SIZE O N W | NIDX SIZE 1 N NIDX

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=1 IDX =N

GPAO GPA 1 GPAN
SIZE O N W | NIDX SIZE 1 N NIDX SIZE N n NIDX

NIDX =N

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT| |SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2025 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

int virtioCoreR3VirtgAvailBufGet(PPDMDEVINS pDevIns, PVIRTIOCORE pVirtio, uintlé_t uVirtg,
uintl6_t uHeadIdx, PVIRTQBUF pVirtqBuf)

{
L]
uint32_t cSegsIn, cSegsOut = @,
PVIRTIOSGSEG paSegsIn = pVirtgBuf-=aSegsIn,
PVIRTIOSGSEG paSegsOut = pVirtqBuf-=aSegsOut,

do

{
PVTRTTOSGSFG nSen

1T (cSegsIn + cSegsOut >= pVirtq->uQueueSize)

1

Error log Only error S'l'op COnlelon

breéh;

virtioReadDesc (pDevIns, pVirtio, pvVirtq, uDescIdx, &desc),

[/ simplified version of the result
if {dESE.fFlagﬂ & VIRTQ DESC F WRITE)
p5eq = &paSeqgsIn[cSegsIn++];

else

pseg

&paSeqgsOut [cSegsOut++];

pSeg->GCPhys = desc.GCPhysBuf,
pSeg->cbSeg = desc.cb;
uDescIdx = desc.uDescIdxNext:

} while (desc.fFlags & VIRTQ_DESC_F_NEXT),

CVE-2024-21114 — Root cause

uQuevueSize is NOT fixed !
Defaultis 1024...

But can be changed by writing info the MMIO
To any value on 16 bits
Maximum OxFFFF

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Root cause

Available Buffers Descriptor Queue Queue Size = OXFFFF

IDX=0 IDX=1 IDX =1024

GPAO GPA 1 GPAN

SIZE O N W | NIDX SIZE 1 N NIDX SIZEN NIDX

NIDX = ... Up to 1024

GPA IN GPA OUT GPAOUT GPA
SIZE IN SIZE OUT SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Root cause

The host fails to properly check it there are too many descriptors in
the list

Can write up to OxFFFF segments in a list of size 1024

OOB write after the VIRTQBUF structure passed in parameter

typedef struct VIRTQBUF

{
VIRTIOSGSEG aseqgsIin[l@24];
VIRTIOSGSEG aseqsOut[1@24],

} VIRTQBUF_T;
typedef struct VIRTIOSGSEG

uinté4_t GCPhys;
51ze_t cbSeq;

} VIRTIOSGSEG;

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Impact

The VIRTQBUF structure can be

, VIRT DESC
located on the stack or In the 0 a
headp
Flags
overflow exploit
4 to 8 bytes
Vulnerabillity allows to write chunks Size (padded with 0)
of 16 bytes in OOB

But only 12 are controlled, 4 last 8 12
bytes are O VIRTIOSGSEG

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Can be triggered from the function virfioNetR3TransmitPkis

In VirtlO network card implementation

ASLR Is defeated thanks to the exploited leak
CVE-2024-2112]1

VirtualBox compiled without stack canaries

Easy win ¢

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF Stack frame of
virtioNetR3TransmitPkis

Saved R13 Saved R12

Saved R14 Saved RDI

Saved RSI Saved RBX

Saved RBP Saved RIP

Sornmnaam<0 XO>»-AW0m

pDevins PDMNETWORKGSO

pThisCC pPTXVirtq

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF Stack frame of
virtioNetR3TransmitPkts

Size (padded with 0)

Saved R14 Saved RDI

Saved RSI Saved RBX

Saved RBP Saved RIP

SsoOoOrnmnaam<o0 XOX>»-AW0m

pDevIns PDMNETWORKGSO

pThisCC pTXVirtq

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF Stack frame of
virtioNetR3TransmitPkts

Size (padded with 0)

Size (padded with 0)

Saved RSI Saved RBX

Saved RBP Saved RIP

SsoOoOrnmnaam<o0 XOX>»-AW0m

pDevIns PDMNETWORKGSO

pThisCC pTXVirtq

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF

Stack frame of
virtioNetR3TransmitPkis

Saved R13 Saved R12

Fully

Saved R14
controlled

Saved RDI

32 upper bits
controlled

Saved RSI Saved RBX

Saved RBP Saved RIP

SOoOrnmnaam<0 XO>»-HAW®m

pDevins PDMNETWORKGSO

pThisCC pTXxVirtq

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF

Stack frame of
virtioNetR3TransmitPkis

Saved R13 Saved R12

Fully

Saved R14
controlled

Saved RDI

32 upper bits
controlled

Saved RSI Saved RBX

Saved RBP Saved RIP x Can not fully conftrol

RIP

Nothing interesfing
to control before RIP

SOoOrnmnaam<0 XO>»-HAW®m

pDevins PDMNETWORKGSO

pThisCC pTXxVirtq

© 2025 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTQBUF

But two objects interesting to conitrol

after RIP iy >
pDevins and pThisCC Saved R13 A Saved R12
Arguments to the function 0x20 E
Saved R14 Saved RDI
Can both be used to have an dalad ' 3
arbitrary call Saved RS - Saved RBX
Before the function returns 0x40 R
Within the limits of CFG Saved RBP i Saved RIP
0x50 O
But function can't return W' PDMNETWORKGSO
RIP has been overwritten 0x60

© 2025 REverse Tactics. All Rights Reserved.

0x70

Exploit — Capabllities

Stack bufter overtlow to 2 arbitrary calls
CFG: Can only call existing functions
Must never return

Strategy
Use the first “arbitrary” call to trigger an arbifrary write
Use the second “arbitrary” call to call Sleep torever

Function will never return

Will not crash |

From stack buffer overtlow to arbitrary write
Can use it only one time
Thread is sleeping torever

© 2025 REverse Tactics. All Rights Reserved.

Exploit — Capabllifies

Single arbitrary write

ASLR Is defeated thanks to the exploited leak
Can place arbitrary data at known location
Know the address of ROP gadgets

Know where the stack of the XHCI command thread is

© 2025 REverse Tactics. All Rights Reserved.

Explolt

static DECLCALLBACK(int) xhciR3WorkerLoop(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
{

while (pThread-=enmState == PDMTHREADSTATE_RUNNING)

{
1t (lu32Tasks)
1
Assert{ASMAtomicReadBool (&pThis->fWrkThreadSleeping)),
rc = PDMDevHlpSUPSemEventWaltNoResume(pDevIns, pThis->hEvtProcess, RT_INDEFINITE_WAIT),
AssertLogRelMsgReturn(RT_SUCCESS(xrc) || rc == VERR_INTERRUPTED, ("%Rrchn", rc), I1c),
1T (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
break:
LogFlowFunc (("Woken up with rc=%Rrcin", rc)),; » Thread s WCIiﬂﬂg here
u32Tasks = ASMAtomicXchgU32(&pThis->u32TasksNew, @),
} » Semaphore
RTCritSectEnter(&pThisCC->CritSectThrd),
if (pThis->crcr & XHCI_CRCR_CRR] » Woke up when o
xhciR3ProcessCommandRing(pDevIns, pThis, pThiscCC); command Is sent by
}_ R the guest

© 2025 REverse Tactics. All Rights Reserved.

Exploit
XHCI's thread stack frame VirtlO's thread stack Frame

PDMDevHIpSUPSemEventWaitNoResume()
frame Vulnerable VIRTIOSGSEG

Saved R12

Saved Register Saved Register Saved R13

Saved Register Saved Register Saved R14 Saved RDI

Saved Register Saved RIP Saved RSI Saved RBX

XhciR3WorkerLoop() Saved RBP
frame
Saved Register Saved Register pDevins PDMNETWORKGSO

© 2025 REverse Tactics. All Rights Reserved.

Saved RIP

SoOormaam<0 XO>»-H®

Exploit
XHCI's thread stack frame VirtlO's thread stack Frame

PDMDeVHIpSUPSemEventWaitNoResume()
frame Vulnerable VIRTIOSGSEG

Saved R12
Saved RDI
Saved RBX

Saved RBP Saved RIP
frame
Saved Register Saved Register pDevins PDMNETWORKGSO

© 2025 REverse Tactics. All Rights Reserved.

Saved Register Saved Register Saved R13

Saved Register Saved Register Saved R14

Saved Register Saved RIP Saved RS|

xXhciR3WorkerLoop()

S
T
A
C
K
O
Vv
E
R
F
L
O
W

Exploit
XHCI's thread stack frame VirtlO's thread stack Frame

PDMDeVHIpSUPSemEventWaitNoResume()
frame Vulnerable VIRTIOSGSEG

Saved R12
Saved RDI
Saved RBX

Saved RBP Saved RIP
frame
Saved Register Saved Register pDevins PDMNETWORKGSO

© 2025 REverse Tactics. All Rights Reserved.

Saved Register Saved Register Saved R13

Saved Register Saved Register Saved R14

Saved Register ROPChain address Saved RS|

xXhciR3WorkerLoop()

S
T
A
C
K
O
Vv
E
R
F
L
O
W

Explolt

XHCI's thread stack frame VirtlO's thread stack Frame

PDMDeVHIpSUPSemEventWaitNoResume()
frame

Saved Register Saved Register
Saved Register Saved Register

Saved Register ROPChain address

xhciR3WorkerLoop()
frame

Saved Register Saved Register

© 2025 REverse Tactics. All Rights Reserved.

Vulnerable VIRTIOSGSEG

Saved R12
Saved RDI

Saved R13

Saved R14

Saved RSI

Saved RBP

pThisCC

AO0O>PHW0M

SOoOrnmaam<oO

Saved RBX
Saved RIP

PDMNETWORKGSO

pTxVirtg

Pivoting to LPE

ROP 1o shellcode
Arbitrary Code Execution with MEDIUM privileges

Shellcode loads arbitrary executable from guest

Using segment descriptor queue
Write It on the host

Use CreateProcess 1o start the chained exploit

Triggers an excepftion to kill itself
Do noft disturb the LPE !

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

Treasure map

Windows kernel

High Integrity level Medium Integrity Level

VirtualBox.exe

Linux Virtual Machine

Windows
userspace

© 2025 REverse Tactics. All Rights Reserved.

Vulnerability Research

Fl - -

= L
45 ey i -
)=

» LPE from medium

wiAZIM, s

PR RT3 R et s, NN A .
IF wvis 43 the Firsy ¢4 ‘wl aen ThiL XUAE errle Sdrmes,
ron:ﬂ:',:: oA, :’ m ICTAMD Mppaars apain, Follow

- " 1y 4rocalled.
MO v WAt ACT
R UGB s 7y

Cheh o maks <
,! rie ¢ &
My i rebaeny

» No need for kAS

ko < ¢ £ surde win Frodlem Testgastel Ty, windows wurde harummargef alv e,

- oeputer niche beschadign wira,

» Target choice
» win32ks
» Already 1
» Found

weon 3w dleze venlermeideung sus araten Ma) angeselgr Dal cesen,
ollten 3ie cen O Mou 3tarten. wenn diece Me

:o:tvhh angeietgn »Aird. missen 316 folgenden sow ity

olgen:

© 2025 REverse Tactics. All Rights Reserved.

Semwr

Direct Composition (DC) 101

DC is part of the win32k API

Not documented

-"'..AF'F'Iicaticun Process "'...F'LF'F'Iicaticun Process D'WM Process

Wrapped by dcomp.dll

DirectComposition DirectComposition Composition
AF Engine

Allows userland applications 1o perform
graphical Y*compositions™

Communicate using the syscalls

NtDComposition*
In particular allow fo send "commands” for User Mode

Kernel Mode

Data will be stored in the kernel and then
transmitted to the privilege process dwm.exe Object Database

win3 2 k.sys

Basically a store of object which are used for
representing graphical elements which can
be updated.

© 2025 REverse Tactics. All Rights Reserved.

DC Resources

DC Resources represent graphical objects, actions or inferaction:s.
C++ objects inheriting from DirectComposition::CResourceMarshaler

Each resources is associated with a “*channel” object.

Userland can manipulate them through a handle (an index in an array) and the handle of the
channel.

Resources can be linked together.

For keeping track of references 1o a resources, a refcount is implemented:
Initially at 1, as long as associated with the channel and usable.
Incremented by 1 if another resource/object is linked to it.

When reaching O, it will be marked as being “to delete” but not actually freed yet.

Change in resources need to be "emitted”/"committed”

Will allow to create a “batch” of serialized data representing the actions
That batch of data will be fetch by dwm at some point

© 2025 REverse Tactics. All Rights Reserved.

Creation of a DC Resource

DC::CApplicationChannel
DeletionList

UpdateList Array Handle Resources

1.b. Allocate Object
& Associate ID

CreationList 1.c. In creation list

i

Resource A
RefCnt=1

1.d Return
Resource ID
1.a. Syscall create
Resource A
Userland
App

© 2025 REverse Tactics. All Rights Reserved.

Creation of a DC Resource

DC::CApplicationChannel
DeletionList

UpdateList Array Handle Resources

2 b Iterate

On List CreationList

2.c Serialize to | | Resource A
Batch RefCnt =1

| DC::CBatch 1

— 4 -

2.d Async. to DWM r

UserLand 2 .a. Commuit
L J

Kernel

Userland
App

© 2025 REverse Tactics. All Rights Reserved.

Update of a DC Resource

DC::CApplicationChannel

UpdateList Array Handle Resources

CreationList 9.c. Added To List

Resource A

| DC::CBate ,
l-.. DC:-:CBatch RetCnt =1

—
3.b. Value
upd ' R '

3.a. Update
Resource

Userland
App

© 2025 REverse Tactics. All Rights Reserved.

Update of a DC Resource

DC::CApplicationChannel
DeletionList

__4.b Iterate

OnList 1" UpdateList : Array Handle Resources

CreationList

e i — T,

4.c Serialize Upd | | Resource A
to Batch RefCnt =1

I' DC::CBatch 1

— 4 -

4.d Async. to DWM f
4.a. Commit

Userland
App

© 2025 REverse Tactics. All Rights Reserved.

Deletion of a DC Resource

DC::CApplicationChannel
DeletionList

UpdateList Array Handle Resources

5.c. In List 5.b. Remove Ptr
& Decrement Refcount

- —

CreationList

Resource A

| DC::CBatd ;
e RetCnt=1->0

i

5.a. Destroy Resource

Userland
App

© 2025 REverse Tactics. All Rights Reserved.

Deletion of a DC Resource

| DC::CApplicationChannel
6.b Iterate

On List

B DeletionList

UpdateList Array Handle Resources

CreationList

6.c Serialize Del | | Resource A
to Batch § RefCnt =0

I' DC::CBatch 1

6.e Asyne. to DWM

k4

6.a. Commit

Userland
App

© 2025 REverse Tactics. All Rights Reserved.

DC Update & Deletion

The Deletionlist & Updatelist are part of the CApplicationChannel
Linked list using the SAME pointer in the resources.

Should never be present in both.

It deleted while updated: removed from update and added to deletion.

RefCnt is at O for all resources In the deletion list. Will be free after commit.

RefCnt is > 0 for all resources In the update list.

Resource A

DeletionList -
eleionLis RefCnt=0

Resource V Resource B
RefCnt=X RefCnt=Y

© 2025 REverse Tactics. All Rights Reserved.

The (potential) bug

currResource = CApp->Updatelist.head; // [1]
if (currResource)
{
while (1)
{
this->Updatelist.head = currResource->nextinList; // [2]
vitable = currResource->vitable;
currResource->nextinList = 0i64; // [3]
if (lvftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]
// Failure of EmitUpdateCommands
currResource->nextinList = CApp->Updatelist.head; // [5]
this->Updatelist.head = currResource;
goto Ibl_retFalse2; // return False from BuildBatch
}
// Success of EmitUpdateCommands
currResource->flags_toEmit &= ~2u;
currResource = CApp->Updatelist.head;
if (!lcurrResource) // nothing in update: go out
break; // continue next part

© 2025 REverse Tactics. All Rights Reserved.

A real bug ?

At this point we have no idea if this is a real vulnerabillity...

Problematics linked to EmifUpdateCommands virfual function:
Need to release the last reference 1o the current resource.

AND to make the function fail after.

And of course we would need to exploit after this.

Good news: there is a LOT of different resources (more than 150)

Means lot of different implementation of EmitUpdafeCommands

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

Releasing the resource

No resource will delete the reference on themselves during the
EmitUpdateCommands

Some resources will release another resource.
n particular visual resources can have “children”

f the link between a child and its parent visual is removed, the reference to the
child will be removed during the EmifUpdateCommands.

ldea: use circular reference
Create a visual with a child.
Make the child have a reference on ifs parent.

Remove the link between child & parent. And any reference on both chila
and parent.

Commit: child get its refcnt at O which trigger the refcnt at 0.

© 2025 REverse Tactics. All Rights Reserved.

Circular References

DeletionList

UpdateList

Resource C
RefCnt =1

Resource V
RefCnt =1

© 2025 REverse Tactics. All Rights Reserved.

Resource A
RefCnt =0

Resource B
RefCnt=Y

Circular References

Resource A

DeletionList RefCnt = 0

Resource C
Trigger RefCnt =1

EmitUpdateCommands

Resource V - Resource B

UpdateList RefCnt=1 N RefCnt=Y

© 2025 REverse Tactics. All Rights Reserved.

Circular References

DeletionList

UpdateList

C. Added D. Next Del

Resource C
RefCnt=1->0

Resource V
RefCnt=1->0

© 2025 REverse Tactics. All Rights Reserved.

Resource A
RefCnt =0

Resource B
RefCnt=Y

Circular References

DeletionList

UpdateList

Resource C
RefCnt=1->0

Resource V
RefCnt=1->0

© 2025 REverse Tactics. All Rights Reserved.

Resource A
RefCnt =0

Resource B
RefCnt=Y

The (potential) bug

currResource = CApp->Updatelist.head; // [1]
if (currResource)
{
while (1)
{
this->Updatelist.head = currResource->nextinList; // [2]
vitable = currResource->vitable;

PRGN o P R [P I S o SV ARV IS A A Y, |
N e 1 1 1 Nl W N] N N . L] I 1 Emio 0 1 l' II lv‘

if (lvftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]
// Failure of EmitUpdateCommands
currResource->nextinList = CApp->Updatelist.head; // [5]
this->Updatelist.head = currResource;
goto Ibl_retFalse2; // return False from BuildBatch

}

// Success ot EmitUpdateCommands

currResource->flags_toEmit &= ~2u;

currResource = CApp->Updatelist.head;

if (!lcurrResource) // nothing in update: go out
break; // continue next part

© 2025 REverse Tactics. All Rights Reserved.

Circular References

Resource A

DeletionList RefCnt = O

Update Faal:
re-insert Resource V
as head of UpdateList.

Resource C
RefCnt=1->0

Resource V & Resource B

are in both list

Resource V Resource B

gt b o RefCnt=1->0 RefCnt=Y

© 2025 REverse Tactics. All Rights Reserved.

Circular References

Resource A
RefCnt =0

DeletionList

Resource C

Deletion is triggered. RefCnt=1->0
The resources are freed.

Resource V Resource B
UpdateList) .
P RetCnt=1->0 RefCnt =%

© 2025 REverse Tactics. All Rights Reserved.

© 2025 REverse Tactics. All Rights Reserved.

Engineering a failure

We still need EmitUpdafeCommands to tail.

But there i1s no easy way to do that with any resources which allow the
removal of the refcount...

One case is possible:

During the emit, more memory might need to be allocated for the
CBatch to recelve the serialized data.

If the allocation fails, EmitUpdateCommands tails

(00 ’) s this even possible ?
/ /

© 2025 REverse Tactics. All Rights Reserved.

Engineering a failure

Allocation use “section” (MmCreateSection)
Section can be allocated using another syscall (NfCreateSection)

In theory we can allocate all memory from the computer and make
the creation tails.

Need to calculate the good size for friggering the batch memory
request at the good moment but that is easily doable.

Can we actually exhaust the memory ¢ Let’s fry!

© 2025 REverse Tactics. All Rights Reserved.

Consuming the world

UAF

k4 L

© 2025 REverse Tactics. All Rights Reserved.

Consuming the world

k4 | i L

© 2025 REverse Tactics. All Rights Reserved.

Consuming the worlad

' to

v v

© 2025 REverse Tactics. All Rights Reserved.

» Successt

.
-

v

» Butwe

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

Basic UAF consideration

We can put ANY resource as a UAF
Lot’s of different object choices!

Deletion is handle. RefCnt=1->0

LO.I. ’ S Of d iffe re n-l- Size ! The resources are freed.

¥

In win32k known exploitation Refont =150 | RofCat = ¥

techniques with palette objects:

Allocated through a syscall
Arbitrary size!

Content controlled!

Let's go!

© 2025 REverse Tactics. All Rights Reserved.

INitial Ideo

@Function_@

Resources are C++ objects with
vitables and Windows has no

SMAP!

@Function_n

DWM Process

Simple (original) idea:
Set our vitable in userland.

Arbitrary code execution each fime
It uses a function!

User Mode

Eernel Mode

Object Database

win32 k.sys

© 2025 REverse Tactics. All Rights Reserved.

INitial Ideo

Resources are C++ objects with
vitables and Windows has no

SMAP!

Simple (original) idea:
Set our vitable in userland.

Arbitrary code execution each time
It uses a function!

But the object Is also accessed by
DWM.exe.

Which will trigger a crash because
not the same userland memory |

User Mode

keernel Mode

© 2025 REverse Tactics. All Rights Reserved.

Process | [Application Process

Object Database

DWM Process

Better iIdea: bufter property

Lot’'s of resource have a “bufter property”
A pointer on an allocated buffer stored in our object.

Possible to use from the userland for sefting data.

The LayerVisual is a visual object with:

A buffer property
A size of Ox190

ldeaq:
Put the LayerVisual in UAF

Rewrite the “buftfer property” pointer with a pointer of our choice using the palette.

Use the pointer (Set the content of the LayerVisual “bufter property”): Arbitrary write!

© 2025 REverse Tactics. All Rights Reserved.

Final Exploit Overview

Vtable

Resource C A Buffer

DeletionList FREE & NO PTR Original

A

Viable l
. Original

Buffer Property

ce \ LayerVisual
UpdateList) UAF
[Before reuse

A

Wing2kApiSetTable Array Handle Resources

© 2025 REverse Tactics. All Rights Reserved.

Final Exploit Overview

“Real” Vtable

_ _ Resource C
DeletionList : T YD T
FREE & NO PIR “Fake real” vitable

For stability

.'. — - ‘

-

Resource \ LayerVisual
UAF UAF
Reuse for stability Reuse Palette

A

Change pointer to Win32kApiSetTable

.I Wing2kApiSetTable Array Handle Resources

© 2025 REverse Tactics. All Rights Reserved.

Final Exploit Overview

“Real” Vtable

Resource C T

DeletionList FREE & NO PTR

“Fake real” vftable
For stability

.'. — - ‘

-

Resource \ LayerVisual
UAF UAF
Reuse for stability Reuse Palette

Memcpy Y

Rewrite

B
.I Wing2kApiSetTable Array Handle Resources
F

Kernel

UserLand

¥ I i
| SetPro perty "|
\ UAF:arbitrary _.-'

| write "

© 2025 REverse Tactics. All Rights Reserved.

Final Exploit Overview

“Real” Vtable

Resource C T

DeletionList FREE & NO PTR

“Fake real” vftable
For stability

.'. — - ‘

-

Resource \ LayerVisual
UAF UAF
Reuse for stability Reuse Palette

Memcpy _

Rewrite

B
.I Wing2kApiSetTable Array Handle Resources
A F

Kernel

UserLand

I-" I | SetProperty |
\ Call memepy | | UAF:arbitrary |
" write "

© 2025 REverse Tactics. All Rights Reserved.

Treasure map

Windows kernel

High Integrity level Medium Inkgrity Level

VirtualBox.exe

Linux Virtual Machine

i
I
:

| —
I {
F— s
Windows

userspace

© 2025 REverse Tactics. All Rights Reserved.

Post exploit

Arbitrary read/write in kernel
Make some cleanup for avoliding o crash because of our list.

Then we could get code execution...

... or simply rewrite the token of our process to be admin.

Steal the token of the inifial process!

We are NT Authority / system !

© 2025 REverse Tactics. All Rights Reserved.

Treasure map

Windows kernel
o "

High Integrity level Medium Ihtegrity Level

\

1

Virtualﬁox.exe

Li'ux Virtual Machine

,-
_ st

- -
Windows

userspace

© 2025 REverse Tactics. All Rights Reserved.

Finding the
map

hing
seas

© 2025 REverse Tactics. All Rights Reserved.

e,

Pwn20wr

couver 2024

» Gotluck
onThoT‘

-
v

- B | |

» Laun

© 2025 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

Got lucky on the draw: first day, first
on that target.

very_stealthy_exploit.png
@ 32% Extracting

Launched the explolt...

VBox exploit works and then... _

© 2025 REverse Tactics. All Rights Reserved.

> CBCﬂ'hJﬂ
on thd

o

Successfully escaped VirtualBox !
Starting EoP in 5...
launcherDelDuringUpd - INFO - Entering exploit main with rounds=06x106000!
launcherDelDuringUpd - INFO - main: Going to elevate pid 9372
exploitDelDuringUpd - INFO - exploit: entered with loglvl=106
exploitDelDuringUpd - INFO - exploit: process name is DelDuringUpd\exploit.py

- exploitDelDuringUpd - INFO - Waiting consume process to start...

INFO -

- exploitDelDuringUpd

Consume process is ready, starting exploit !

i .'._.‘

© 2025 REverse Tactics. All Rights Reserved.

> CBCﬂ'hJﬂ
on thd

o

Successfully escaped VirtualBox !
Starting EoP in 5...
launcherDelDuringUpd - INFO - Entering exploit main with rounds=06x106000!
launcherDelDuringUpd - INFO - main: Going to elevate pid 9372
exploitDelDuringUpd - INFO - exploit: entered with loglvl=106
exploitDelDuringUpd - INFO - exploit: process name is DelDuringUpd\exploit.py

- exploitDelDuringUpd - INFO - Waiting consume process to start...

INFO -

- exploitDelDuringUpd

Consume process is ready, starting exploit !

i .'._.‘

© 2025 REverse Tactics. All Rights Reserved.

> CBCﬂ'hJﬂ
on thd

o

Successfully escaped VirtualBox !
Starting EoP in 5...
launcherDelDuringUpd - INFO - Entering exploit main with rounds=06x106000!
launcherDelDuringUpd - INFO - main: Going to elevate pid 9372
exploitDelDuringUpd - INFO - exploit: entered with loglvl=106
exploitDelDuringUpd - INFO - exploit: process name is DelDuringUpd\exploit.py

- exploitDelDuringUpd - INFO - Waiting consume process to start...

INFO -

- exploitDelDuringUpd

Consume process is ready, starting exploit !

i .'._.‘

© 2025 REverse Tactics. All Rights Reserved.

> CBCﬂ'hJﬂ
on thd

o

Successfully escaped VirtualBox !
Starting EoP in 5...
launcherDelDuringUpd - INFO - Entering exploit main with rounds=06x106000!
launcherDelDuringUpd - INFO - main: Going to elevate pid 9372
exploitDelDuringUpd - INFO - exploit: entered with loglvl=106
exploitDelDuringUpd - INFO - exploit: process name is DelDuringUpd\exploit.py

- exploitDelDuringUpd - INFO - Waiting consume process to start...

INFO -

- exploitDelDuringUpd

Consume process is ready, starting exploit !

i .'._.‘

© 2025 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

Got lucky on the draw: first day, first
on that target.

Launched the explolt...
VBox exploit works and then...
Wait...
Wait...
Wait...
Worked on first fry!!

-

[5 CAWindows\System32\emd.e :
- -
Cc) Micrapaft ::s [Version 10.0.22631. 3296

rporation. All rights reserved

C:\Users\p2o_1ow
P20_06\p20. Lon \APPData\Local\Tenp\7zsu97FDD98>uhoa.i

C:\Users\p2o_low
nt authoritY\SYSl::pData\Local\Te.p\vzs"97poogs>'h°a'i

Gr
\Users\pzo_lou\AppData\Local\Tenp\7zsu97FDD98>

© 2025 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

Exploits fully written in Python + self-extracting archive

VirtualBox Escape 100% stable
Windows LPE not 100% stable

Had a full win |
Lucky: picked first in the random draw

No bug collisions

SUCCESS - Bruno PUJOS and Corentin BAYET from REverse Tactics ((@Reverse Tactics)
combined two Oracle VirtualBox bugs - including a buffer overflow - along with a Windows
UAF to escape the guest 05 and execute code as SYSTEM on the host O5. This fantastic

research earns them $90,000 and 9 Master of Pwn points.

© 2025 REverse Tactics. All Rights Reserved.

Pwn20Own Berlin 2025

Also had an entry atf Pwn20wn this year 4
This fime targeting VMware ESXi __ 4
= ZERO D
— NITIATIVE \ &

Corentin Bayet

@Reverse_Tactics

|

vvvvv
ve

[LUCTARILE

VMware ESXi in the
Virtualization category

PRIZE §

$112,500

© 2025 REverse Tactics. All Rights Reserved.

» Want to lec
» Availab .-.1 isors”
> hﬂp .

- B | |

© 2025 REverse Tactics. All Rights Reserved.

TACT

QUESTIONS ?

© 2025 REverse Tactics. All Rights Reserved.

https://www.linkedin.com/company/reverse-tactics/
https://twitter.com/Reverse_Tactics
https://www.reversetactics.com/
https://www.reversetactics.com/

