
© 2025 REverse Tactics. All Rights Reserved.

1

Journey to freedom

CORENTIN BAYET BRUNO PUJOS

© 2025 REverse Tactics. All Rights Reserved.

2

Who am I ?
Security researcher and CTO of REverse Tactics.

Specialized in low-level software reverse engineering and exploit,

and in particular:

• Kernel and OS security

• Hypervisors

• Embedded Software

CORENTIN BAYET

https://www.reversetactics.com/

© 2025 REverse Tactics. All Rights Reserved.

3

Who am I ?
CEO and founder of REverse Tactics.

Security researcher specialized in Reverse Engineering &

Vulnerability Research. In particular:

• UEFI firmware

• Kernel & virtualization.

• Embedded Software

BRUNO PUJOS

© 2025 REverse Tactics. All Rights Reserved.

4

Pwn2Own Vancouver 2024

 At Pwn2Own we chained a VirtualBox VM Escape with a LPE

Windows

© 2025 REverse Tactics. All Rights Reserved.

5

Pwn2Own rules (virtualization)

 Exploit needs to demonstrate Virtual Machine escape (VME)

 Start with administrator/root privileges in the guest (Linux or Windows)

 Must demonstrate code execution on the host

 Up-to-date Windows for Virtualbox

 Can be chained with elevation of privileges on the host for a bonus

 About configuration

 Virtual machines can have a great variety of configurations

 Big impact on the available attack surface

 Doesn’t have to target the default configuration

 But must represent a realistic real life scenario

 The organizer decides

© 2025 REverse Tactics. All Rights Reserved.

6

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

7

Oracle VirtualBox

 Popular hypervisor

 Open source

 Free

 Easy to use

 Working on Windows / Linux / MacOS

 Maintained by Oracle

 No team 100% dedicated to VirtualBox’s security

© 2025 REverse Tactics. All Rights Reserved.

8

A few definitions

 Hypervisor: Software that manages one or multiple virtual machines
on a single physical computer

 Here, Virtualbox

 Host: Operating system running the hypervisor

 Here, Windows is running Virtualbox

 Guest: Operating system running in the virtual machine

 GPA: Guest Physical Address

 An address in the physical memory view of the guest

 Paravirtualization: virtualization technique

 Guest OS is modified to communicate directly with the hypervisor

 Improved performances

© 2025 REverse Tactics. All Rights Reserved.

9

Communication channels

 Exchange data through shared memory

 Direct Memory Access (DMA)

 Trigger specific actions through

 Port mapped Input/Output (PMIO)

 Privileged instructions: IN / OUT

 Memory Mapped IO (MMIO)

 Read / write in specific physical memory ranges

 Hypercalls

 Specific interfaces used with paravirtualized devices

© 2025 REverse Tactics. All Rights Reserved.

10

Setup

 Chipsec

 Framework for testing the security of hardware or system firmware (UEFI / BIOS)

 Already developed drivers for Windows and Linux that exposes privileged
operations

 Allocate / Read / Write physical memory

 Execute privileged instructions

 IN / OUT (PMIO)

 Hypercalls

 Read / Write in PCI

 Has a Python API !

 OS agnostic !

© 2025 REverse Tactics. All Rights Reserved.

11

Setup

© 2025 REverse Tactics. All Rights Reserved.

12

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

13

Finding the map
 A good journey always start with a good state of the art

 Very important step, not to neglect

 MUST put time into it

 Goals:

 Find generic information on the target

 Public documentation

 Source code organization

 Is it fuzzed ?

 Study previous vulnerabilities

 Understand common attack surfaces

 Note exploit techniques

 Extract vulnerable patterns

© 2025 REverse Tactics. All Rights Reserved.

14

CVE-2023-21988

 Uninitialized memory read in VirtualBox

 Found and exploited by @MajorTomSec of Synacktiv for Pwn2Own 2023

 Bug affecting PGMPhysRead

 Function responsible for reading the physical memory of the guest to a

host buffer

 See it as an equivalent of copy_from_user or memcpy

 The source address is a GPA

© 2025 REverse Tactics. All Rights Reserved.

15

CVE-2023-21988

 This function will split the access page by page

 Because each guest physical page can be located at a different place in

host’s memory

 It also handle MMIO accesses

 If one of the GPA is registered as a MMIO, call the appropriate MMIO

handler

 If any error occurs during the MMIO handling fill up the output buffer and

return

© 2025 REverse Tactics. All Rights Reserved.

16

CVE-2023-21988

Note: code was simplified

© 2025 REverse Tactics. All Rights Reserved.

17

CVE-2023-21988

 Only calls memset for the current

page size.

 Remaining on the pvBuf buffer remains

uninitialized.

© 2025 REverse Tactics. All Rights Reserved.

18

CVE-2023-21988

 Bug allows to let some data uninitialized when reading from guest

physical memory

 Requires to control the GPA to trigger an error

 This is a very common pattern

 Requires to find a code that will write back this uninitialized data to the

guest

 Found in the XHCI device

 Impact:

 Leak uninitialized memory from the host

 Get some stack/heap pointers and defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

19

CVE-2023-21988

© 2025 REverse Tactics. All Rights Reserved.

20

CVE-2023-21988 - Patched

© 2025 REverse Tactics. All Rights Reserved.

21

CVE-2023-21988 - Patched

 What's happening there ?

© 2025 REverse Tactics. All Rights Reserved.

22

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2025 REverse Tactics. All Rights Reserved.

23

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2025 REverse Tactics. All Rights Reserved.

24

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

 Nope !

© 2025 REverse Tactics. All Rights Reserved.

25

CVE-2024-21121

 No error during the callback

 pvBuf still not initialized

© 2025 REverse Tactics. All Rights Reserved.

26

CVE-2024-21121
 Found a variant of the bug

 Can use the same exploit technique as CVE-2023-21988

 Requires to find specific MMIO read handlers

 Must return a success without fully initializing the buffer

 Must be registered with the flag IOMMMIO_FLAGS_READ_PASSTHRU

 Allow the MMIO handler to be called for any size instead of only 1/2/4

 The MMIO handler for the BusLogic device fits perfectly

 Hard disk technology

 We have our leak !

 And can defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

27

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

28

Reaching high seas

 Hypervisors have a HUGE code base, you can’t audit everything

 Very time consuming to fully understand an attack surface from top to
bottom

 We don’t have this time ! How to chose where to look ?

 Use knowledge acquired during SOTA to find “interesting” code

 Vulnerability patterns

 Attack surfaces with a lot of past bugs

 Use tools !

 grep

 Find a list of things to look at deeper

 Low quality code

 Attack surfaces not identified during SOTA

© 2025 REverse Tactics. All Rights Reserved.

29

Reaching high seas

 But was not a great success on VirtualBox code base

 Too much false positives

 Vulnerabilities only accessible in the weirdest configurations

 Non exploitable / reachable bugs

 Code that felt weird but was fine

 Spent too much time on those

 But allowed me to explore a lot of different code

 Acquired knowledge on the code base

 Found interesting attack surfaces to look at from top to bottom !

© 2025 REverse Tactics. All Rights Reserved.

30

Reaching high seas

 Decided to chose the VirtIO devices implementation

 Specification for a paravirtualization interface for multiple devices

 Implemented in a lot of hypervisors

 VirtualBox implements the VirtIO Disk and Network card

 VirtualBox’s implementation can be compared to others

 And the code felt a bit weird…

© 2025 REverse Tactics. All Rights Reserved.

31

Reaching high seas

© 2025 REverse Tactics. All Rights Reserved.

32

VirtIO queues

 VirtIO Queues is a mechanism to send and receive data to and from the guest

 Implemented in the core of VirtIO

 used by all VirtIO devices

 Problematic: want to send a lot of data between guest and host

 Cannot use a single contiguous buffer of physical memory

 A very common way to do this is to use a queue of segment descriptors

 A segment represents a chunk of contiguous physical memory to use

 Each segment is described by

 A Guest Physical Address

 A size

© 2025 REverse Tactics. All Rights Reserved.

33

VirtIO queue descriptors

 Additional flags

 VIRTQ_DESC_F_NEXT

 The descriptor chain is not over

Get the next descriptor at index NIDX

 VIRTQ_DESC_F_WRITE

 The buffer must be used only for writing

© 2025 REverse Tactics. All Rights Reserved.

34

VirtIO queue descriptors chain

© 2025 REverse Tactics. All Rights Reserved.

35

VirtIO – VBox implementation

 Function virtioCoreR3VirtqAvailBufGet

 Responsible for parsing a descriptor chain

 Place it in the VIRTQBUF passed in parameter

 Contains a list of segments

© 2025 REverse Tactics. All Rights Reserved.

36

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

37

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

38

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

39

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

40

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

41

VirtIO – VBox implementation

 Only error stop condition

© 2025 REverse Tactics. All Rights Reserved.

42

CVE-2024-21114 – Root cause

 uQueueSize is NOT fixed !

 Default is 1024…

 But can be changed by writing into the MMIO

 To any value on 16 bits

 Maximum 0xFFFF

© 2025 REverse Tactics. All Rights Reserved.

43

CVE-2024-21114 – Root cause

© 2025 REverse Tactics. All Rights Reserved.

44

CVE-2024-21114 – Root cause

 The host fails to properly check if there are too many descriptors in

the list

 Can write up to 0xFFFF segments in a list of size 1024

 OOB write after the VIRTQBUF structure passed in parameter

© 2025 REverse Tactics. All Rights Reserved.

45

CVE-2024-21114 – Impact

 The VIRTQBUF structure can be

located on the stack or in the

heap

 Decide to go with the stack buffer

overflow exploit

 Vulnerability allows to write chunks

of 16 bytes in OOB

 But only 12 are controlled, 4 last

bytes are 0

© 2025 REverse Tactics. All Rights Reserved.

46

CVE-2024-21114 – Exploit

 Can be triggered from the function virtioNetR3TransmitPkts

 In VirtIO network card implementation

 ASLR is defeated thanks to the exploited leak

 CVE-2024-21121

 VirtualBox compiled without stack canaries

 Easy win ?

© 2025 REverse Tactics. All Rights Reserved.

47

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

48

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

49

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

50

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

51

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

 Can not fully control

RIP

 Nothing interesting

to control before RIP

© 2025 REverse Tactics. All Rights Reserved.

52

CVE-2024-21114 – Exploit

 But two objects interesting to control
after RIP

 pDevIns and pThisCC

 Arguments to the function

 Can both be used to have an
arbitrary call

 Before the function returns

 Within the limits of CFG

 But function can’t return

 RIP has been overwritten

© 2025 REverse Tactics. All Rights Reserved.

53

Exploit – Capabilities
 Stack buffer overflow to 2 arbitrary calls

 CFG: Can only call existing functions

 Must never return

 Strategy

 Use the first “arbitrary” call to trigger an arbitrary write

 Use the second “arbitrary” call to call Sleep forever

 Function will never return

 Will not crash !

 From stack buffer overflow to arbitrary write

 Can use it only one time

 Thread is sleeping forever

© 2025 REverse Tactics. All Rights Reserved.

54

Exploit – Capabilities

 Single arbitrary write

 ASLR is defeated thanks to the exploited leak

 Can place arbitrary data at known location

 Know the address of ROP gadgets

 Know where the stack of the XHCI command thread is

© 2025 REverse Tactics. All Rights Reserved.

55

Exploit

 Thread is waiting here

 Semaphore

 Woke up when a

command is sent by

the guest

© 2025 REverse Tactics. All Rights Reserved.

56

Exploit

© 2025 REverse Tactics. All Rights Reserved.

57

Exploit

© 2025 REverse Tactics. All Rights Reserved.

58

Exploit

© 2025 REverse Tactics. All Rights Reserved.

59

Exploit

© 2025 REverse Tactics. All Rights Reserved.

60

Pivoting to LPE

 ROP to shellcode

 Arbitrary Code Execution with MEDIUM privileges

 Shellcode loads arbitrary executable from guest

 Using segment descriptor queue

 Write it on the host

 Use CreateProcess to start the chained exploit

 Triggers an exception to kill itself

 Do not disturb the LPE !

© 2025 REverse Tactics. All Rights Reserved.

61

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

62

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

63

Vulnerability Research

 LPE from medium

 No need for kASLR bypass

 Target choice:

 win32k is a huge attack surface

 Already targeted it at P2O 2022

 Found a vulnerability in “Direct Composition” (DC)

Why not look at it again ?

© 2025 REverse Tactics. All Rights Reserved.

64

Direct Composition (DC) 101

 DC is part of the win32k API

 Not documented

 Wrapped by dcomp.dll

 Allows userland applications to perform
graphical “compositions”

 Communicate using the syscalls
NtDComposition*

 In particular allow to send “commands” for
manipulating “resources”.

 Data will be stored in the kernel and then
transmitted to the privilege process dwm.exe

 Basically a store of object which are used for
representing graphical elements which can
be updated.

© 2025 REverse Tactics. All Rights Reserved.

65

DC Resources

 DC Resources represent graphical objects, actions or interactions.

 C++ objects inheriting from DirectComposition::CResourceMarshaler

 Each resources is associated with a “channel” object.

 Userland can manipulate them through a handle (an index in an array) and the handle of the
channel.

 Resources can be linked together.

 For keeping track of references to a resources, a refcount is implemented:

 Initially at 1, as long as associated with the channel and usable.

 Incremented by 1 if another resource/object is linked to it.

 When reaching 0, it will be marked as being “to delete” but not actually freed yet.

 Change in resources need to be “emitted”/”committed”

 Will allow to create a “batch” of serialized data representing the actions

 That batch of data will be fetch by dwm at some point

© 2025 REverse Tactics. All Rights Reserved.

66

Creation of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

67

Creation of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

68

Update of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

69

Update of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

70

Deletion of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

71

Deletion of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

72

DC Update & Deletion

 The DeletionList & UpdateList are part of the CApplicationChannel

 Linked list using the SAME pointer in the resources.

 Should never be present in both.

 If deleted while updated: removed from update and added to deletion.

 RefCnt is at 0 for all resources in the deletion list. Will be free after commit.

 RefCnt is > 0 for all resources in the update list.

© 2025 REverse Tactics. All Rights Reserved.

73

currResource = CApp->UpdateList.head; // [1]

if (currResource)

{

while (1)

{

this->UpdateList.head = currResource->nextInList; // [2]

vftable = currResource->vftable;

currResource->nextInList = 0i64; // [3]

if (!vftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]

// Failure of EmitUpdateCommands

currResource->nextInList = CApp->UpdateList.head; // [5]

this->UpdateList.head = currResource;

goto lbl_retFalse2; // return False from BuildBatch

}

// Success of EmitUpdateCommands

currResource->flags_toEmit &= ~2u;

currResource = CApp->UpdateList.head;

if (!currResource) // nothing in update: go out

break; // continue next part

}

}

The (potential) bug

© 2025 REverse Tactics. All Rights Reserved.

74

A real bug ?

 At this point we have no idea if this is a real vulnerability…

 Problematics linked to EmitUpdateCommands virtual function:

 Need to release the last reference to the current resource.

 AND to make the function fail after.

 And of course we would need to exploit after this.

 Good news: there is a LOT of different resources (more than 150)

 Means lot of different implementation of EmitUpdateCommands

© 2025 REverse Tactics. All Rights Reserved.

75

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

76

Releasing the resource

 No resource will delete the reference on themselves during the
EmitUpdateCommands

 Some resources will release another resource.

 In particular visual resources can have “children”

 If the link between a child and its parent visual is removed, the reference to the
child will be removed during the EmitUpdateCommands.

 Idea: use circular reference

1. Create a visual with a child.

2. Make the child have a reference on its parent.

3. Remove the link between child & parent. And any reference on both child
and parent.

4. Commit: child get its refcnt at 0 which trigger the refcnt at 0.

© 2025 REverse Tactics. All Rights Reserved.

77

Circular References

© 2025 REverse Tactics. All Rights Reserved.

78

Circular References

© 2025 REverse Tactics. All Rights Reserved.

79

Circular References

© 2025 REverse Tactics. All Rights Reserved.

80

Circular References

© 2025 REverse Tactics. All Rights Reserved.

81

currResource = CApp->UpdateList.head; // [1]

if (currResource)

{

while (1)

{

this->UpdateList.head = currResource->nextInList; // [2]

vftable = currResource->vftable;

currResource->nextInList = 0i64; // [3]

if (!vftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]

// Failure of EmitUpdateCommands

currResource->nextInList = CApp->UpdateList.head; // [5]

this->UpdateList.head = currResource;

goto lbl_retFalse2; // return False from BuildBatch

}

// Success of EmitUpdateCommands

currResource->flags_toEmit &= ~2u;

currResource = CApp->UpdateList.head;

if (!currResource) // nothing in update: go out

break; // continue next part

}

}

The (potential) bug

© 2025 REverse Tactics. All Rights Reserved.

82

Circular References

© 2025 REverse Tactics. All Rights Reserved.

83

Circular References

© 2025 REverse Tactics. All Rights Reserved.

84

EmitUpdateCommands fail

© 2025 REverse Tactics. All Rights Reserved.

85

Engineering a failure

 We still need EmitUpdateCommands to fail.

 But there is no easy way to do that with any resources which allow the

removal of the refcount…

 One case is possible:

 During the emit, more memory might need to be allocated for the

CBatch to receive the serialized data.

 If the allocation fails, EmitUpdateCommands fails

Is this even possible ?

© 2025 REverse Tactics. All Rights Reserved.

86

Engineering a failure

 Allocation use “section” (MmCreateSection)

 Section can be allocated using another syscall (NtCreateSection)

 In theory we can allocate all memory from the computer and make
the creation fails.

 Need to calculate the good size for triggering the batch memory
request at the good moment but that is easily doable.

 Can we actually exhaust the memory ? Let’s try!

© 2025 REverse Tactics. All Rights Reserved.

87

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

88

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

89

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

90

It’s a real bug !

 Successfully trigger the UAF!

 But we still need to get away with the gold!

 Let’s see how we can exploit our UAF.

© 2025 REverse Tactics. All Rights Reserved.

91

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

92

Basic UAF consideration

 We can put ANY resource as a UAF

 Lot’s of different object choices!

 Lot’s of different size!

 In win32k known exploitation

techniques with palette objects:

 Allocated through a syscall

 Arbitrary size!

 Content controlled!

 Let’s go!
Must be of the same size.

Must allow to do something with the UAF.

Must be easy to allocate numerous time.

If possible, persistent in memory.

Interesting object

© 2025 REverse Tactics. All Rights Reserved.

93

Initial idea

 Resources are C++ objects with

vftables and Windows has no

SMAP!

 Simple (original) idea:

 Set our vftable in userland.

 Arbitrary code execution each time

it uses a function!

© 2025 REverse Tactics. All Rights Reserved.

94

Initial idea

 Resources are C++ objects with

vftables and Windows has no

SMAP!

 Simple (original) idea:

 Set our vftable in userland.

 Arbitrary code execution each time

it uses a function!

 But the object is also accessed by

DWM.exe.

 Which will trigger a crash because
not the same userland memory :(

© 2025 REverse Tactics. All Rights Reserved.

95

Better idea: buffer property

 Lot’s of resource have a “buffer property”

 A pointer on an allocated buffer stored in our object.

 Possible to use from the userland for setting data.

 The LayerVisual is a visual object with:

 A buffer property

 A size of 0x190

 Idea:

1. Put the LayerVisual in UAF

2. Rewrite the “buffer property” pointer with a pointer of our choice using the palette.

3. Use the pointer (Set the content of the LayerVisual “buffer property”): Arbitrary write!

© 2025 REverse Tactics. All Rights Reserved.

96

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

97

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

98

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

99

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

100

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

101

Post exploit

 Arbitrary read/write in kernel

 Make some cleanup for avoiding to crash because of our list.

 Then we could get code execution…

 … or simply rewrite the token of our process to be admin.

 Steal the token of the initial process!

 We are NT Authority / system !

© 2025 REverse Tactics. All Rights Reserved.

102

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

103

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

104

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

© 2025 REverse Tactics. All Rights Reserved.

105

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

very_stealthy_exploit.png

© 2025 REverse Tactics. All Rights Reserved.

106

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

© 2025 REverse Tactics. All Rights Reserved.

107

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

108

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

109

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

110

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

 Wait…

 Worked on first try!!

© 2025 REverse Tactics. All Rights Reserved.

111

Pwn2Own Vancouver 2024

 Exploits fully written in Python + self-extracting archive

 VirtualBox Escape 100% stable

 Windows LPE not 100% stable

 Had a full win !

 Lucky: picked first in the random draw

 No bug collisions

© 2025 REverse Tactics. All Rights Reserved.

112

Pwn2Own Berlin 2025

 Also had an entry at Pwn2Own this year

 This time targeting VMware ESXi

© 2025 REverse Tactics. All Rights Reserved.

113

Your turn !

 Want to learn VM escapes ?

 Available seats for our training “Bug hunting in Hypervisors”

 https://www.reversetactics.com/trainings/

© 2025 REverse Tactics. All Rights Reserved.

114

QUESTIONS ?

contact@reversetactics.com

https://www.linkedin.com/company/reverse-tactics/
https://twitter.com/Reverse_Tactics
https://www.reversetactics.com/
https://www.reversetactics.com/

