
© 2025 REverse Tactics. All Rights Reserved.

1

Journey to freedom

CORENTIN BAYET BRUNO PUJOS

© 2025 REverse Tactics. All Rights Reserved.

2

Who am I ?
Security researcher and CTO of REverse Tactics.

Specialized in low-level software reverse engineering and exploit,

and in particular:

• Kernel and OS security

• Hypervisors

• Embedded Software

CORENTIN BAYET

https://www.reversetactics.com/

© 2025 REverse Tactics. All Rights Reserved.

3

Who am I ?
CEO and founder of REverse Tactics.

Security researcher specialized in Reverse Engineering &

Vulnerability Research. In particular:

• UEFI firmware

• Kernel & virtualization.

• Embedded Software

BRUNO PUJOS

© 2025 REverse Tactics. All Rights Reserved.

4

Pwn2Own Vancouver 2024

 At Pwn2Own we chained a VirtualBox VM Escape with a LPE

Windows

© 2025 REverse Tactics. All Rights Reserved.

5

Pwn2Own rules (virtualization)

 Exploit needs to demonstrate Virtual Machine escape (VME)

 Start with administrator/root privileges in the guest (Linux or Windows)

 Must demonstrate code execution on the host

 Up-to-date Windows for Virtualbox

 Can be chained with elevation of privileges on the host for a bonus

 About configuration

 Virtual machines can have a great variety of configurations

 Big impact on the available attack surface

 Doesn’t have to target the default configuration

 But must represent a realistic real life scenario

 The organizer decides

© 2025 REverse Tactics. All Rights Reserved.

6

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

7

Oracle VirtualBox

 Popular hypervisor

 Open source

 Free

 Easy to use

 Working on Windows / Linux / MacOS

 Maintained by Oracle

 No team 100% dedicated to VirtualBox’s security

© 2025 REverse Tactics. All Rights Reserved.

8

A few definitions

 Hypervisor: Software that manages one or multiple virtual machines
on a single physical computer

 Here, Virtualbox

 Host: Operating system running the hypervisor

 Here, Windows is running Virtualbox

 Guest: Operating system running in the virtual machine

 GPA: Guest Physical Address

 An address in the physical memory view of the guest

 Paravirtualization: virtualization technique

 Guest OS is modified to communicate directly with the hypervisor

 Improved performances

© 2025 REverse Tactics. All Rights Reserved.

9

Communication channels

 Exchange data through shared memory

 Direct Memory Access (DMA)

 Trigger specific actions through

 Port mapped Input/Output (PMIO)

 Privileged instructions: IN / OUT

 Memory Mapped IO (MMIO)

 Read / write in specific physical memory ranges

 Hypercalls

 Specific interfaces used with paravirtualized devices

© 2025 REverse Tactics. All Rights Reserved.

10

Setup

 Chipsec

 Framework for testing the security of hardware or system firmware (UEFI / BIOS)

 Already developed drivers for Windows and Linux that exposes privileged
operations

 Allocate / Read / Write physical memory

 Execute privileged instructions

 IN / OUT (PMIO)

 Hypercalls

 Read / Write in PCI

 Has a Python API !

 OS agnostic !

© 2025 REverse Tactics. All Rights Reserved.

11

Setup

© 2025 REverse Tactics. All Rights Reserved.

12

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

13

Finding the map
 A good journey always start with a good state of the art

 Very important step, not to neglect

 MUST put time into it

 Goals:

 Find generic information on the target

 Public documentation

 Source code organization

 Is it fuzzed ?

 Study previous vulnerabilities

 Understand common attack surfaces

 Note exploit techniques

 Extract vulnerable patterns

© 2025 REverse Tactics. All Rights Reserved.

14

CVE-2023-21988

 Uninitialized memory read in VirtualBox

 Found and exploited by @MajorTomSec of Synacktiv for Pwn2Own 2023

 Bug affecting PGMPhysRead

 Function responsible for reading the physical memory of the guest to a

host buffer

 See it as an equivalent of copy_from_user or memcpy

 The source address is a GPA

© 2025 REverse Tactics. All Rights Reserved.

15

CVE-2023-21988

 This function will split the access page by page

 Because each guest physical page can be located at a different place in

host’s memory

 It also handle MMIO accesses

 If one of the GPA is registered as a MMIO, call the appropriate MMIO

handler

 If any error occurs during the MMIO handling fill up the output buffer and

return

© 2025 REverse Tactics. All Rights Reserved.

16

CVE-2023-21988

Note: code was simplified

© 2025 REverse Tactics. All Rights Reserved.

17

CVE-2023-21988

 Only calls memset for the current

page size.

 Remaining on the pvBuf buffer remains

uninitialized.

© 2025 REverse Tactics. All Rights Reserved.

18

CVE-2023-21988

 Bug allows to let some data uninitialized when reading from guest

physical memory

 Requires to control the GPA to trigger an error

 This is a very common pattern

 Requires to find a code that will write back this uninitialized data to the

guest

 Found in the XHCI device

 Impact:

 Leak uninitialized memory from the host

 Get some stack/heap pointers and defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

19

CVE-2023-21988

© 2025 REverse Tactics. All Rights Reserved.

20

CVE-2023-21988 - Patched

© 2025 REverse Tactics. All Rights Reserved.

21

CVE-2023-21988 - Patched

 What's happening there ?

© 2025 REverse Tactics. All Rights Reserved.

22

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2025 REverse Tactics. All Rights Reserved.

23

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

© 2025 REverse Tactics. All Rights Reserved.

24

Pushing the issue deeper
 pgmPhysReadHandler

 Function that will call the appropriate MMIO handler for the given GPA

 How does a MMIO handler looks like ?

 A lot of different devices, a lot of different MMIO handlers

 Is supposed to fill the provided buffer depending on the given GPA

 Are they all doing it ?

 Nope !

© 2025 REverse Tactics. All Rights Reserved.

25

CVE-2024-21121

 No error during the callback

 pvBuf still not initialized

© 2025 REverse Tactics. All Rights Reserved.

26

CVE-2024-21121
 Found a variant of the bug

 Can use the same exploit technique as CVE-2023-21988

 Requires to find specific MMIO read handlers

 Must return a success without fully initializing the buffer

 Must be registered with the flag IOMMMIO_FLAGS_READ_PASSTHRU

 Allow the MMIO handler to be called for any size instead of only 1/2/4

 The MMIO handler for the BusLogic device fits perfectly

 Hard disk technology

 We have our leak !

 And can defeat ASLR

© 2025 REverse Tactics. All Rights Reserved.

27

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

28

Reaching high seas

 Hypervisors have a HUGE code base, you can’t audit everything

 Very time consuming to fully understand an attack surface from top to
bottom

 We don’t have this time ! How to chose where to look ?

 Use knowledge acquired during SOTA to find “interesting” code

 Vulnerability patterns

 Attack surfaces with a lot of past bugs

 Use tools !

 grep

 Find a list of things to look at deeper

 Low quality code

 Attack surfaces not identified during SOTA

© 2025 REverse Tactics. All Rights Reserved.

29

Reaching high seas

 But was not a great success on VirtualBox code base

 Too much false positives

 Vulnerabilities only accessible in the weirdest configurations

 Non exploitable / reachable bugs

 Code that felt weird but was fine

 Spent too much time on those

 But allowed me to explore a lot of different code

 Acquired knowledge on the code base

 Found interesting attack surfaces to look at from top to bottom !

© 2025 REverse Tactics. All Rights Reserved.

30

Reaching high seas

 Decided to chose the VirtIO devices implementation

 Specification for a paravirtualization interface for multiple devices

 Implemented in a lot of hypervisors

 VirtualBox implements the VirtIO Disk and Network card

 VirtualBox’s implementation can be compared to others

 And the code felt a bit weird…

© 2025 REverse Tactics. All Rights Reserved.

31

Reaching high seas

© 2025 REverse Tactics. All Rights Reserved.

32

VirtIO queues

 VirtIO Queues is a mechanism to send and receive data to and from the guest

 Implemented in the core of VirtIO

 used by all VirtIO devices

 Problematic: want to send a lot of data between guest and host

 Cannot use a single contiguous buffer of physical memory

 A very common way to do this is to use a queue of segment descriptors

 A segment represents a chunk of contiguous physical memory to use

 Each segment is described by

 A Guest Physical Address

 A size

© 2025 REverse Tactics. All Rights Reserved.

33

VirtIO queue descriptors

 Additional flags

 VIRTQ_DESC_F_NEXT

 The descriptor chain is not over

Get the next descriptor at index NIDX

 VIRTQ_DESC_F_WRITE

 The buffer must be used only for writing

© 2025 REverse Tactics. All Rights Reserved.

34

VirtIO queue descriptors chain

© 2025 REverse Tactics. All Rights Reserved.

35

VirtIO – VBox implementation

 Function virtioCoreR3VirtqAvailBufGet

 Responsible for parsing a descriptor chain

 Place it in the VIRTQBUF passed in parameter

 Contains a list of segments

© 2025 REverse Tactics. All Rights Reserved.

36

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

37

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

38

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

39

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

40

VirtIO – VBox implementation

© 2025 REverse Tactics. All Rights Reserved.

41

VirtIO – VBox implementation

 Only error stop condition

© 2025 REverse Tactics. All Rights Reserved.

42

CVE-2024-21114 – Root cause

 uQueueSize is NOT fixed !

 Default is 1024…

 But can be changed by writing into the MMIO

 To any value on 16 bits

 Maximum 0xFFFF

© 2025 REverse Tactics. All Rights Reserved.

43

CVE-2024-21114 – Root cause

© 2025 REverse Tactics. All Rights Reserved.

44

CVE-2024-21114 – Root cause

 The host fails to properly check if there are too many descriptors in

the list

 Can write up to 0xFFFF segments in a list of size 1024

 OOB write after the VIRTQBUF structure passed in parameter

© 2025 REverse Tactics. All Rights Reserved.

45

CVE-2024-21114 – Impact

 The VIRTQBUF structure can be

located on the stack or in the

heap

 Decide to go with the stack buffer

overflow exploit

 Vulnerability allows to write chunks

of 16 bytes in OOB

 But only 12 are controlled, 4 last

bytes are 0

© 2025 REverse Tactics. All Rights Reserved.

46

CVE-2024-21114 – Exploit

 Can be triggered from the function virtioNetR3TransmitPkts

 In VirtIO network card implementation

 ASLR is defeated thanks to the exploited leak

 CVE-2024-21121

 VirtualBox compiled without stack canaries

 Easy win ?

© 2025 REverse Tactics. All Rights Reserved.

47

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

48

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

49

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

50

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

© 2025 REverse Tactics. All Rights Reserved.

51

CVE-2024-21114 – Exploit

 Stack frame of

virtioNetR3TransmitPkts

 Can not fully control

RIP

 Nothing interesting

to control before RIP

© 2025 REverse Tactics. All Rights Reserved.

52

CVE-2024-21114 – Exploit

 But two objects interesting to control
after RIP

 pDevIns and pThisCC

 Arguments to the function

 Can both be used to have an
arbitrary call

 Before the function returns

 Within the limits of CFG

 But function can’t return

 RIP has been overwritten

© 2025 REverse Tactics. All Rights Reserved.

53

Exploit – Capabilities
 Stack buffer overflow to 2 arbitrary calls

 CFG: Can only call existing functions

 Must never return

 Strategy

 Use the first “arbitrary” call to trigger an arbitrary write

 Use the second “arbitrary” call to call Sleep forever

 Function will never return

 Will not crash !

 From stack buffer overflow to arbitrary write

 Can use it only one time

 Thread is sleeping forever

© 2025 REverse Tactics. All Rights Reserved.

54

Exploit – Capabilities

 Single arbitrary write

 ASLR is defeated thanks to the exploited leak

 Can place arbitrary data at known location

 Know the address of ROP gadgets

 Know where the stack of the XHCI command thread is

© 2025 REverse Tactics. All Rights Reserved.

55

Exploit

 Thread is waiting here

 Semaphore

 Woke up when a

command is sent by

the guest

© 2025 REverse Tactics. All Rights Reserved.

56

Exploit

© 2025 REverse Tactics. All Rights Reserved.

57

Exploit

© 2025 REverse Tactics. All Rights Reserved.

58

Exploit

© 2025 REverse Tactics. All Rights Reserved.

59

Exploit

© 2025 REverse Tactics. All Rights Reserved.

60

Pivoting to LPE

 ROP to shellcode

 Arbitrary Code Execution with MEDIUM privileges

 Shellcode loads arbitrary executable from guest

 Using segment descriptor queue

 Write it on the host

 Use CreateProcess to start the chained exploit

 Triggers an exception to kill itself

 Do not disturb the LPE !

© 2025 REverse Tactics. All Rights Reserved.

61

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

62

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

63

Vulnerability Research

 LPE from medium

 No need for kASLR bypass

 Target choice:

 win32k is a huge attack surface

 Already targeted it at P2O 2022

 Found a vulnerability in “Direct Composition” (DC)

Why not look at it again ?

© 2025 REverse Tactics. All Rights Reserved.

64

Direct Composition (DC) 101

 DC is part of the win32k API

 Not documented

 Wrapped by dcomp.dll

 Allows userland applications to perform
graphical “compositions”

 Communicate using the syscalls
NtDComposition*

 In particular allow to send “commands” for
manipulating “resources”.

 Data will be stored in the kernel and then
transmitted to the privilege process dwm.exe

 Basically a store of object which are used for
representing graphical elements which can
be updated.

© 2025 REverse Tactics. All Rights Reserved.

65

DC Resources

 DC Resources represent graphical objects, actions or interactions.

 C++ objects inheriting from DirectComposition::CResourceMarshaler

 Each resources is associated with a “channel” object.

 Userland can manipulate them through a handle (an index in an array) and the handle of the
channel.

 Resources can be linked together.

 For keeping track of references to a resources, a refcount is implemented:

 Initially at 1, as long as associated with the channel and usable.

 Incremented by 1 if another resource/object is linked to it.

 When reaching 0, it will be marked as being “to delete” but not actually freed yet.

 Change in resources need to be “emitted”/”committed”

 Will allow to create a “batch” of serialized data representing the actions

 That batch of data will be fetch by dwm at some point

© 2025 REverse Tactics. All Rights Reserved.

66

Creation of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

67

Creation of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

68

Update of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

69

Update of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

70

Deletion of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

71

Deletion of a DC Resource

© 2025 REverse Tactics. All Rights Reserved.

72

DC Update & Deletion

 The DeletionList & UpdateList are part of the CApplicationChannel

 Linked list using the SAME pointer in the resources.

 Should never be present in both.

 If deleted while updated: removed from update and added to deletion.

 RefCnt is at 0 for all resources in the deletion list. Will be free after commit.

 RefCnt is > 0 for all resources in the update list.

© 2025 REverse Tactics. All Rights Reserved.

73

currResource = CApp->UpdateList.head; // [1]

if (currResource)

{

while (1)

{

this->UpdateList.head = currResource->nextInList; // [2]

vftable = currResource->vftable;

currResource->nextInList = 0i64; // [3]

if (!vftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]

// Failure of EmitUpdateCommands

currResource->nextInList = CApp->UpdateList.head; // [5]

this->UpdateList.head = currResource;

goto lbl_retFalse2; // return False from BuildBatch

}

// Success of EmitUpdateCommands

currResource->flags_toEmit &= ~2u;

currResource = CApp->UpdateList.head;

if (!currResource) // nothing in update: go out

break; // continue next part

}

}

The (potential) bug

© 2025 REverse Tactics. All Rights Reserved.

74

A real bug ?

 At this point we have no idea if this is a real vulnerability…

 Problematics linked to EmitUpdateCommands virtual function:

 Need to release the last reference to the current resource.

 AND to make the function fail after.

 And of course we would need to exploit after this.

 Good news: there is a LOT of different resources (more than 150)

 Means lot of different implementation of EmitUpdateCommands

© 2025 REverse Tactics. All Rights Reserved.

75

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

76

Releasing the resource

 No resource will delete the reference on themselves during the
EmitUpdateCommands

 Some resources will release another resource.

 In particular visual resources can have “children”

 If the link between a child and its parent visual is removed, the reference to the
child will be removed during the EmitUpdateCommands.

 Idea: use circular reference

1. Create a visual with a child.

2. Make the child have a reference on its parent.

3. Remove the link between child & parent. And any reference on both child
and parent.

4. Commit: child get its refcnt at 0 which trigger the refcnt at 0.

© 2025 REverse Tactics. All Rights Reserved.

77

Circular References

© 2025 REverse Tactics. All Rights Reserved.

78

Circular References

© 2025 REverse Tactics. All Rights Reserved.

79

Circular References

© 2025 REverse Tactics. All Rights Reserved.

80

Circular References

© 2025 REverse Tactics. All Rights Reserved.

81

currResource = CApp->UpdateList.head; // [1]

if (currResource)

{

while (1)

{

this->UpdateList.head = currResource->nextInList; // [2]

vftable = currResource->vftable;

currResource->nextInList = 0i64; // [3]

if (!vftable->EmitUpdateCommands(currResource, &pCBatch)) { // [4]

// Failure of EmitUpdateCommands

currResource->nextInList = CApp->UpdateList.head; // [5]

this->UpdateList.head = currResource;

goto lbl_retFalse2; // return False from BuildBatch

}

// Success of EmitUpdateCommands

currResource->flags_toEmit &= ~2u;

currResource = CApp->UpdateList.head;

if (!currResource) // nothing in update: go out

break; // continue next part

}

}

The (potential) bug

© 2025 REverse Tactics. All Rights Reserved.

82

Circular References

© 2025 REverse Tactics. All Rights Reserved.

83

Circular References

© 2025 REverse Tactics. All Rights Reserved.

84

EmitUpdateCommands fail

© 2025 REverse Tactics. All Rights Reserved.

85

Engineering a failure

 We still need EmitUpdateCommands to fail.

 But there is no easy way to do that with any resources which allow the

removal of the refcount…

 One case is possible:

 During the emit, more memory might need to be allocated for the

CBatch to receive the serialized data.

 If the allocation fails, EmitUpdateCommands fails

Is this even possible ?

© 2025 REverse Tactics. All Rights Reserved.

86

Engineering a failure

 Allocation use “section” (MmCreateSection)

 Section can be allocated using another syscall (NtCreateSection)

 In theory we can allocate all memory from the computer and make
the creation fails.

 Need to calculate the good size for triggering the batch memory
request at the good moment but that is easily doable.

 Can we actually exhaust the memory ? Let’s try!

© 2025 REverse Tactics. All Rights Reserved.

87

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

88

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

89

Consuming the world

© 2025 REverse Tactics. All Rights Reserved.

90

It’s a real bug !

 Successfully trigger the UAF!

 But we still need to get away with the gold!

 Let’s see how we can exploit our UAF.

© 2025 REverse Tactics. All Rights Reserved.

91

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

92

Basic UAF consideration

 We can put ANY resource as a UAF

 Lot’s of different object choices!

 Lot’s of different size!

 In win32k known exploitation

techniques with palette objects:

 Allocated through a syscall

 Arbitrary size!

 Content controlled!

 Let’s go!
Must be of the same size.

Must allow to do something with the UAF.

Must be easy to allocate numerous time.

If possible, persistent in memory.

Interesting object

© 2025 REverse Tactics. All Rights Reserved.

93

Initial idea

 Resources are C++ objects with

vftables and Windows has no

SMAP!

 Simple (original) idea:

 Set our vftable in userland.

 Arbitrary code execution each time

it uses a function!

© 2025 REverse Tactics. All Rights Reserved.

94

Initial idea

 Resources are C++ objects with

vftables and Windows has no

SMAP!

 Simple (original) idea:

 Set our vftable in userland.

 Arbitrary code execution each time

it uses a function!

 But the object is also accessed by

DWM.exe.

 Which will trigger a crash because
not the same userland memory :(

© 2025 REverse Tactics. All Rights Reserved.

95

Better idea: buffer property

 Lot’s of resource have a “buffer property”

 A pointer on an allocated buffer stored in our object.

 Possible to use from the userland for setting data.

 The LayerVisual is a visual object with:

 A buffer property

 A size of 0x190

 Idea:

1. Put the LayerVisual in UAF

2. Rewrite the “buffer property” pointer with a pointer of our choice using the palette.

3. Use the pointer (Set the content of the LayerVisual “buffer property”): Arbitrary write!

© 2025 REverse Tactics. All Rights Reserved.

96

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

97

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

98

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

99

Final Exploit Overview

© 2025 REverse Tactics. All Rights Reserved.

100

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

101

Post exploit

 Arbitrary read/write in kernel

 Make some cleanup for avoiding to crash because of our list.

 Then we could get code execution…

 … or simply rewrite the token of our process to be admin.

 Steal the token of the initial process!

 We are NT Authority / system !

© 2025 REverse Tactics. All Rights Reserved.

102

Treasure map

© 2025 REverse Tactics. All Rights Reserved.

103

Plan

02

Reaching

high seas

03

Exploring

the ocean

04

Hunting for

gold

05

Stealing the

treasure

01

Finding the

map

06

Making

Port

© 2025 REverse Tactics. All Rights Reserved.

104

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

© 2025 REverse Tactics. All Rights Reserved.

105

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

very_stealthy_exploit.png

© 2025 REverse Tactics. All Rights Reserved.

106

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

© 2025 REverse Tactics. All Rights Reserved.

107

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

108

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

109

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

 Wait…

© 2025 REverse Tactics. All Rights Reserved.

110

Pwn2Own Vancouver 2024

 Got lucky on the draw: first day, first

on that target.

 Launched the exploit…

 VBox exploit works and then…

 Wait…

 Wait…

 Wait…

 Worked on first try!!

© 2025 REverse Tactics. All Rights Reserved.

111

Pwn2Own Vancouver 2024

 Exploits fully written in Python + self-extracting archive

 VirtualBox Escape 100% stable

 Windows LPE not 100% stable

 Had a full win !

 Lucky: picked first in the random draw

 No bug collisions

© 2025 REverse Tactics. All Rights Reserved.

112

Pwn2Own Berlin 2025

 Also had an entry at Pwn2Own this year

 This time targeting VMware ESXi

© 2025 REverse Tactics. All Rights Reserved.

113

Your turn !

 Want to learn VM escapes ?

 Available seats for our training “Bug hunting in Hypervisors”

 https://www.reversetactics.com/trainings/

© 2025 REverse Tactics. All Rights Reserved.

114

QUESTIONS ?

contact@reversetactics.com

https://www.linkedin.com/company/reverse-tactics/
https://twitter.com/Reverse_Tactics
https://www.reversetactics.com/
https://www.reversetactics.com/

