Attacking hypervisors:
A practical case

) w d
“amrldack

© 2023 REverse Tactics. All Rights Reserved.

Whoam | ¢

Security researcher and CTO of REverse Tactics.

Specialized in low-level software reverse engineering and exploit,
and in particular:

CORENTIN

Kernel and OS security
Hypervisors

Embedded Software

© 2023 REverse Tactics. All Rights Reserved.

https://www.reversetactics.com/

Last year talk

Virtualization from an attacker point-of-view
An introduction to VM escapes

New is not always better.

................

.............

..............
...........
..............
..................
ooooooooo
................
............

000000
. - ’
...........
...............

ooooooooo
.............
.......................
ooooooooooooooooooooooooooooooo

........
....................................
........
e an

..............

........................

..........................
""""""""""""""""""""""""""

© 2023 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

Participated at Pwn20wn in March
Hacking contest organized by ZDI
Rewarded for demonstrating O-day exploits on popular targets

Has a virtualization category

Master of Pwn Eligible for Add-

Target Prize Points on Prize

Oracle VirtualBox Yes
VMware Workstation

VMware ESXi $150,000

Microsoft Hyper-V Client $250,000

© 2023 REverse Tactics. All Rights Reserved.

Pwn20wn rules (virtualization)

Exploit needs to demonstrate Virtual Machine escape (VME)
Start with administrator/root privileges in the guest (Linux or Windows)

Must demonstrate code execution on the host
Up-to-date Windows for Virtualbox

Can be chained with elevation of privieges on the host for a bonus

About configuration
Virtual machines can have a great variety of configurations
Big impact on the available attack surface

Doesn’t have to target the default configuration
But must represent a redalistic real life scenario

The organizer decides

© 2023 REverse Tactics. All Rights Reserved.

Oracle VirtualBox

Popular hypervisor
Open source

Free
Easy to use

Working on Windows / Linux / MacOS

Maintained by Oracle

No team 100% dedicated to VirfualBox's security

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

A few definitions

Hypervisor: Software that manages one or mulfiple virtual machines
on a single physical computer

Here, Virfualbox

Host: Operating system running the hypervisor
Here, Windows is running Virtualbox

Guest: Operating system running Iin the virtual machine

GPA: Guest Physical Address
An address in the physical memory view of the guest

Paravirtualization: virtualization technigue
Guest OS is modified to communicate directly with the hypervisor

Improved performances

© 2023 REverse Tactics. All Rights Reserved.

Communication channels

Exchange data through shared memory

Direct Memory Access (DMA)
Trigger specific actions through
Port mapped Input/Output (PMIO)
Privileged instructions: IN / OUT
Memory Mapped IO (MMIO)
Read / write In specific physical memory ranges
Hypercalls

Specific interfaces used with paravirtualized devices

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

Step 0: Setup

Need a way to easily debug the Hypervisor
For Virtualbox: GDB / Windbg

Not much to say

Need a way to easily test things from the guest

And reach inferesting code paths of the hypervisor

How do we easily communicate with the hypervisor from the guest ?

© 2023 REverse Tactics. All Rights Reserved.

How 1o reach vulnerable code

Communications channels through MMIO, PMIO, DMA, Hypercalls
Read/write access to physical memory

Execute privileged instructions
You need ring-0 privilege

So you are supposed to write kernel drivers

Kernel drivers

Written in compiled and low-level languages (usually C)

Hell fo compille

Dependent of the operating system
Dependent of the operating system VERSION

| don’'t want to do this every time | want to test something

© 2023 REverse Tactics. All Rights Reserved.

How 1o reach vulnerable code

Chipsec

Framework originally developed for testing the security of hardware or system
firmware (UEFI / BIOS)

Already developed drivers for Windows and Linux that exposes privieged
operafions

Allocate / Read / Write physical memory

Execute privileged instructions
N / OUT (PMIO)

Hypercalls

Read / Write in PCI

Has a Python API |
OS agnostic |

© 2023 REverse Tactics. All Rights Reserved.

How 1o reach vulnerable code

from chipsec import chipset
cs = chipset.cs().basic_init_with_helpexr()
Allocate and write 1into physical memory

phys_addr = cs.mem.alloc_physical mem(@2x1@@@, @xtfffffff)
cs.mem.write_physical _mem(phys_addr, b'A'*@x100@)

Trigger MMIO, provide DMA address
mmio_data = phys_addr.to_bytes(4, byteorder='little')
cs.mmio.write_MMIO_reg(@xbcoooeed, @, mmlo_data, 4)

read result
data = cs.mem.read_physical_mem(phys_addr, ©2x10@@)

© 2023 REverse Tactics. All Rights Reserved.

Step 1: State of the art

Very important step, not to neglect
MUST put time Info it

FInd generic information on the target
Public documentation

Source code organization

Architecture

s It fuzzed ¢

How ¢

© 2023 REverse Tactics. All Rights Reserved.

Step 1: State of the art

Prior related security work

Study previous vulnerabllities
Understand common attack surfaces
Note exploit technigues

What kind of vulnerabillities are actually exploitable
Might be useful later

Extract vulnerable patterns
The kind of bugs that can be found in code base

Take time to really understand the bugs
Even reproduce them it needed
Might find some variants...

This phase should give you list a of ideas
Write a list |

© 2023 REverse Tactics. All Rights Reserved.

State of the art;: CVE-2023-21988

Uninitialized memory read in VirtualBox

Found and exploited by @MajorTomSec Synacktiv for Pwn20wn 2023
Bug affecting PGMPhysRead

Function responsible for reading the physical memory of the guest to o

host buffer

See It as an equivalent of copy_from_user or memcpy

The source address is a GPA

pVM
GCPhys
pvBuf
cbRead
enmOTrigin

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, void *pvBuf,

© 2023 REverse Tactics. All Rights Reserved.

size_t cbRead, PGMACCESSORIGIN enmOrigin)

CVE-2023-21988

This function will split the access page by page

Because each guest physical page can be located at a different place in
host’'s memory

IT also handle MMIO accesses

It one of the GPA Is registered as a MMIO, call the appropriate MMIO
handler

If any error occurs during the MMIO handling fill up the output buffer and
return

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

{

f{/ [...] Loop on each page
{
size_t cb = GQUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
if (cb > cbRead)
cb = cbRead:
/f Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
// call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrictl);
else
{
'* Set the remaining buffer to a known value.
memset (pvBuf, @xff, cb);
PGM_UNLOCK (pVM) ;
return rcstrict2;
}
J
..
]

Note: code was simplified

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

f

f{/ [...] Loop on each page
{
size_t «cb = QUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ,
ifT (cb > cbRead)
cb = cbRead;
// Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
J
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pvM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin};
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS5_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2),
else
{
Set_the remaining huffer to a known value
memﬂet[pvﬂuf OxfT, ch];
PGM_UNLUCK [PV ; » Only calls memset for the current
return rcStrict2; .
} page size.
I- . .
TR » Remaining on the pvBuf buffer remains
}- uninifialized.

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21988

Bug allows to let some data uninifialized when reading from guest
ohysical memory

Requires to control the GPA to trigger an error

This Is a very common pattern

Requires to find a code that will write back this uninitialized data to the
guest

Found In the XHCI device

Impact:
Leak uninifialized memory from the host

Get some stack/heap pointers and defeat ASLR

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21938

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin)

{

f{/ [...] Loop on each page
{
size_t «cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK);
if (cb > cbRead)
cb = cbRead:
' Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
{
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
1T (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2);
else
{
(*_Set _the remainino buffer to a known value.
memset (pvBuf, @xff, cb);
PGM_UNLUCK [pVM] ;
return rcstrict2;
}
]
..
I

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21988 - Patched

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, siz

I"|:I

_t cbRead, PGMACCESSORIGIN enmOrigin’

{
f{/ [...] Loop on each page
{
size_t cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
1T (cb > cbRead)
ch = chRead,
f{ Is a MMIO Page
1T (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
" call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcStrict2),;
else
{
—Cet—the—temaining—buffes—4o a known value.
memﬂet[pvﬂuf @xTf, cbRead):
PGM_UNLOCK (pVM) ;
return rcsStrict2;
I
I
o]
7

© 2023 REverse Tactics. All Rights Reserved.

CVE-2023-21988 - Patchea

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin’
{

f{/ [...] Loop on each page
{
size_t «cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK],
if (cb > cbRead)
cb = cbRead:
f{ Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
1T (PGM_PHYS_RW_IS_SUCCESS[TICSTIICT.Z))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcstrict2); P What's happening there ¢
else
{
/* Set the remaining buffer to a known value.
memset(pvBuf, @xff, cbRead),
PGM_UNLOCK (pVM}) ;
return rcsStrict2;
}
I
Mol
¥

© 2023 REverse Tactics. All Rights Reserved.

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

© 2023 REverse Tactics. All Rights Reserved.

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

BACK(VBOXSTRICTRC) buslogicMMIORead(PPDMDEVINS pDevIns, vold *pvUser, RTGCPHYS off, wvoid *pv,

RT_NOREF (pDevIns, pvUser, off, pv, cb),

;|
e 5
F1 i

return VIN

© 2023 REverse Tactics. All Rights Reserved.

510

ch)

Pushing the Issue deeper

pgmPhysReadHandler

Function that will call the appropriate MMIO handler for the given GPA
How does a MMIO handler looks like ¢

A lot of different devices, a lot of different MMIO handlers

s supposed to fill the provided buffer depending on the given GPA
Are they all doing it ¢

BACK(VBOXSTRICTRC) buslogicMMIORead(PPDMDEVINS pDevIns, vold *pvUser, RTGCPHYS off, wvoid *pv,

RT_NOREF (pDevIns, pvUser, off, pv, cb),

;|
e 5
F1 i

return VIN

MSG_FAILED(("MMIO Read: %RGp LB %u\n", off, cb)), Nope!

© 2023 REverse Tactics. All Rights Reserved.

510

ch)

CVE-2024-21121

VMMDECL (VBOXSTRICTRC) PGMPhysRead(PVMCC pVM, RTGCPHYS GCPhys, vold *pvBuf, size_t cbRead, PGMACCESSORIGIN enmOrigin’
{

f{/ [...] Loop on each page
{
1Ze_1 cb = GUEST_PAGE_SIZE - (off & GUEST_PAGE_OFFSET_MASK) ;
if cb > cbRead)
cb = cbRead:
f{ Is a MMIO Page
1t (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) || PGM_PAGE_IS_SPECIAL_ALIAS_MMIO(pPage))
1
call MMIO handler
VBOXSTRICTRC rcStrict2 = pgmPhysReadHandler(pVM, pPage, pRam->GCPhys + off, pvBuf, cb, enmOrigin);
it (PGM_PHYS_RW_IS_SUCCESS(rcStrict2))
PGM_PHYS_RW_DO_UPDATE_STRICT_RC(rcStrict, rcstrict2); p NO error during the callback
else
¢ __ , | » pVvBuUf still not inifialized
/* Set the remaining buffer to a known value. */
memset(pvBuf, @xff, cbRead),
PGM_UNLOCK { p¥M} ;
return rcsStrict2;
I
f
L]
I

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-2112]1

Found a variant of the bug

Can use the same exploit technigue as CVE-2023-21988

Requires to find specific MMIO read handlers

Must return a success without fully initializing the buffer

Must be registered with the flag IOMMMIO_FLAGS_READ_PASSTHRU
Allow the MMIO handler to be called for any size instead of only 1/2/4

The MMIO handler for the BusLogic device fits perfectly
Hard disk fechnology

We have our leak |
And can defeat ASLR

© 2023 REverse Tactics. All Rights Reserved.

Step 2: FInding the needles

Hypervisors have a HUGE code base, you can’t audit everything

Very time consuming to fully understand an aftack surface from top to
bottom

We don't have this fime | How to chose where to look ¢

Use knowledge acquired during SOTA to find “interesting” code
Vulnerabillity patterns
Attack surfaces with a lot of past bugs

Use tools |

grep
Find a list of things to look at deeper

Low quality code
Attack surfaces not identitied during SOTA

© 2023 REverse Tactics. All Rights Reserved.

Step 2: FInding the needles

But was not a great success on VirtualBox code base

Too much false positives
Vulnerabillities only accessible in the weirdest configurations

Non exploitable / reachable bugs

Code that felt weird but was fine

Spent too much time on those

But allowed me to explore a lot of different code
Acquired knowledge on the code base

Found interesting attack surfaces to look at from top to bottom !

© 2023 REverse Tactics. All Rights Reserved.

Step 3: Targeted research

Declded to chose the VirtlO devices implementation
Specification for a paravirtualization intferface for multiple devices
Implemented in a lof of hypervisors

VirtualBox implements the VirtlO Disk and Network card

VirtualBox's implementation can be compared to others
And the code felt a bit weird...

© 2023 REverse Tactics. All Rights Reserved.

Step 3: Targeted research

#ifdef VIRTIO_VBUF_ON_STACK
PVIRTQBUF pVirtqBuf = virtioCoreR3VirtgBufAlloc(),
it (!pVirtqBuf)
{
LogRel(("Falled to allocate memory for VIRTQBUF\R"));
break, /* No point in trying to allocate memory for other descriptor chains */

}
int rc = virtioCoreR3VirtgAvalilBufGet (pDevIns, &pThis->Virtio, uVirtgNhbr,

pWorkerR3->auRedoDescs[1], pVirtgBuf),
#else /* IVIRTIO_VBUF_ON_STACK */
PVIRTQBUF pVirtgBuf,
rc = virtioCoreR3VirtgAvailBufGet (pDevIns, &pThis->Virtio, uVirtgNbr,
pWorkerR3->auRedoDescs[1], &pVirtgBuf);
#endif /* IVIRTIO_VBUF_ON_STACK */

© 2023 REverse Tactics. All Rights Reserved.

VirtflO queues

VirtlO Queues iIs a mechanism o send and receive data fo and from the guest

Implemented in the core of VirtlO

used by all VirtlO devices

Problematic: want to send a lof of data between guest and host

Cannot use a single configuous buffer of physical memory

A very common way to do this Is fo use a queue of segment descriptors

A segment represents a chunk of contiguous physical memory to use

Each segment is described by
A Guest Physical Address
A size

© 2023 REverse Tactics. All Rights Reserved.

VirtlO queue descriptors

Additional flags
VIRTQ_DESC_F_NEXT

The descriptor chain is not over

Get the next descriptor at index NIDX
VIRTQ_DESC _F WRITE

The buffer must be used only for writing

© 2023 REverse Tactics. All Rights Reserved.

VirtlO queue descriptors chain

Available Buffers Descriptor Queue Queue Size = N+1

IDX =0 IDX=N

GPA

SIZE N W NIDX N NIDX SIZE N W | NIDX

NIDX =N

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Function virtioCoreR3VirtqAvailBufGet

Responsible for parsing a descriptor chain

Place it in the VIRTQBUF passed in parameter

Contains a list of segments

typedef struct VIRTQBUF

GSEG aseqgsIn[1024] ;
SEG

, Gt aseqsout[10.24],;
} VIRTQBUF_T,

typedef struct VIRTIOSGSEG

uinté4_t GCPhys;
size_t cbSeq,
} VIRTIOSGSEG;

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

int virtioCoreR3VirtgAvailBufGet(PPDMDEVINS pDevIns, PVIRTIOCORE pVirtio, uintlé_t uVirtg,
uintl6_t uHeadIdx, PVIRTQBUF pVirtqBuf)

{

uint32_t cSegsIn, cSegsOut = @,
PVIRTIOSGSEG paSegsIn = pVirtgBuf-=aSegsIn,
PVIRTIOSGSEG paSegsOut = pVirtqBuf-=aSegsOut,

do
{
PVIRTIOSGSEG p5eq,
1T (cSegsIn + cSegsOut >= pVirtq->uQueueSize)

J
L

| Error log
break:

virtioReadDesc (pDevIns, pVirtio, pvVirtq, uDescIdx, &desc),

ff{ simplified version of the result
1T (desc.fFlags & VIRTQ_DESC_F_WRITE)
p5eq = &paSeqgsIn[cSegsIn++];
else
p5eq = &paSeqgsOut[cS5eqgsOut++];

pSeg->GCPhys = desc.GCPhysBuf,
pSeg->cbSeg = desc.cb;
uDescIdx = desc.uDescIdxNext:

} while (desc.fFlags & VIRTQ_DESC_F_NEXT),

VirtlO — VBox iImplementation

Avallable Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=N

GPA1l

SIZE O N |W | NIDX N NIDX

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT| |SIZE OUT SIZE
SIZE IN O SIZE IN 1 1023 OUT 1023

Host IN segment list list Size = 1024 Host OUT segment list List Size = 1024

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX =N

GPAO GPA 1

SIZE O N W | NIDX SIZE 1 N NIDX

GPA IN GPA OUT GPA OUT GPA
GPAIN O GPAIN 1 1023 OUT 1023

SIZE IN SIZE OUT| |SIZE OUT SIZE
SIZE IN O SIZEIN 1 1023 OUT 1023

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=1 IDX =N

GPAO GPA 1

SIZE O N W | NIDX SIZE 1 N NIDX

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

Available Buffers Descriptor Queue Queue Size = N+1

IDX=0 IDX=1 IDX =N

GPAO GPA 1 GPAN
SIZE O N W | NIDX SIZE 1 N NIDX SIZE N n NIDX

NIDX =N

GPA IN GPA OUT GPA OUT GPA
SIZE IN SIZE OUT| |SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2023 REverse Tactics. All Rights Reserved.

VirtlO — VBox iImplementation

int virtioCoreR3VirtgAvailBufGet(PPDMDEVINS pDevIns, PVIRTIOCORE pVirtio, uintlé_t uVirtg,
uintl6_t uHeadIdx, PVIRTQBUF pVirtqBuf)

{
L]
uint32_t cSegsIn, cSegsOut = @,
PVIRTIOSGSEG paSegsIn = pVirtgBuf-=aSegsIn,
PVIRTIOSGSEG paSegsOut = pVirtqBuf-=aSegsOut,

do

{
PVTRTTOSGSFG nSen

1T (cSegsIn + cSegsOut >= pVirtq->uQueueSize)

1

Error log Only error S'l'op COnlelon

breéh;

virtioReadDesc (pDevIns, pVirtio, pvVirtq, uDescIdx, &desc),

[/ simplified version of the result
if {dESE.fFlagﬂ & VIRTQ DESC F WRITE)
p5eq = &paSeqgsIn[cSegsIn++];

else

pseg

&paSeqgsOut [cSegsOut++];

pSeg->GCPhys = desc.GCPhysBuf,
pSeg->cbSeg = desc.cb;
uDescIdx = desc.uDescIdxNext:

} while (desc.fFlags & VIRTQ_DESC_F_NEXT),

CVE-2024-21114 — Root cause

uQuevueSize is NOT fixed !
Defaultis 1024...

But can be changed by writing info the MMIO
To any value on 16 bits
Maximum OxFFFF

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Root cause

Available Buffers Descriptor Queue Queue Size = OXFFFF

IDX=0 IDX=1 IDX =1024

GPAO GPA 1 GPAN

SIZE O N W | NIDX SIZE 1 N NIDX SIZEN NIDX

NIDX = ... Up to 1024

GPA IN GPA OUT GPAOUT GPA
SIZE IN SIZE OUT SIZE OUT SIZE

Host IN segment list List Size = 1024 Host OUT segment list List Size = 1024

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Root cause

The host fails to properly check it there are too many descriptors in
the list

Can write up to OxFFFF segments in a list of size 1024

OOB write after the VIRTQBUF structure passed in parameter

typedef struct VIRTQBUF

{
VIRTIOSGSEG aseqgsIin[l@24];
VIRTIOSGSEG aseqsOut[1@24],

} VIRTQBUF_T;
typedef struct VIRTIOSGSEG

uinté4_t GCPhys;
51ze_t cbSeq;

} VIRTIOSGSEG;

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 — Impact

The VIRTQBUF sfructure can be located on the stack or in the heap
VirtlO disk allocate it on the heap

VirtlO network card place it on the stack

Decide to go with the stack buftfer overflow exploit

Vulnerabillity allows to write chunks of Ox10 bytes in OOB

But only OxC are conftrolled, 4 last bytes are O

VIRT_DESC VIRTIOSGSEG
2 4 6

Size (padded with 0)

© 2023 REverse Tactics. All Rights Reserved.

4 to 8 bytes

CVE-2024-21114 - Exploit

Can be triggered from the function virfioNetR3TransmitPkis

In VirtlO network card implementation

ASLR Is defeated thanks to the exploited leak
CVE-2024-2112]1

VirtualBox compiled without stack canaries

Easy win ¢

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTIOSGSEG Stack frame of
virtioNetR3TransmitPkts

Saved R13 Saved R12

Fully

Saved R14 Saved RDI
controlled

32 upper bits
controlled

Saved RSI Saved RBX

Saved RBP Saved RIP

pDevins PDMNETWORKGSO

pThisCC pPTXVirtq

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTIOSGSEG Stack frame of
virtioNetR3TransmitPkts

Saved R13 Saved R12

Fully

Saved R14 Saved RDI
controlled

32 upper bits
controlled

Saved RSI Saved RBX

Saved RBP Saved RIP x Can not fully control
RIP

Nothing interesfing
to control before RIP

pDevins PDMNETWORKGSO

pThisCC pPTXVirtq

© 2023 REverse Tactics. All Rights Reserved.

CVE-2024-21114 - Exploit

Vulnerable VIRTIOSGSEG

But two objects interesting to conitrol
after RIP

pDevins and pThisCC Saved R13
Arguments to the function 0x20
Saved R14
Can both be used to have an 0x30
arbitrary call Saved RS
Before the function returns 0x40
Within the limits of CFG Saved RBP
0x50
But function can’t refurn pDevins

RIP has been overwritten 0x60

pThisCC
0x70

© 2023 REverse Tactics. All Rights Reserved.

Saved R12

Saved RDI

Saved RBX

Saved RIP

PDMNETWORKGSO

pTXVirtq

Exploit — Capabllities

Stack bufter overtlow to 2 arbitrary calls
CFG: Can only call existing functions
Must never return

Strategy
Use the first “arbitrary” call to trigger an arbifrary write
Use the second “arbitrary” call to call Sleep torever

Function will never return

Will not crash |

From stack buffer overtlow to arbitrary write
Can use it only one time
Thread is sleeping torever

© 2023 REverse Tactics. All Rights Reserved.

Exploit — Capabllifies

Single arbitrary write

ASLR Is defeated thanks to the exploited leak
Can place arbitrary data at known location
Know the address of ROP gadgets

Know where the stack of the XHCI command thread is

© 2023 REverse Tactics. All Rights Reserved.

Explolt

static DECLCALLBACK(int) xhciR3WorkerLoop(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
{

while (pThread-=enmState == PDMTHREADSTATE_RUNNING)

{
1t (lu32Tasks)
1
Assert{ASMAtomicReadBool (&pThis->fWrkThreadSleeping)),
rc = PDMDevHlpSUPSemEventWaltNoResume(pDevIns, pThis->hEvtProcess, RT_INDEFINITE_WAIT),
AssertLogRelMsgReturn(RT_SUCCESS(xrc) || rc == VERR_INTERRUPTED, ("%Rrchn", rc), I1c),
1T (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
break:
LogFlowFunc (("Woken up with rc=%Rrcin", rc)),; » Thread s WCIiﬂﬂg here
u32Tasks = ASMAtomicXchgU32(&pThis->u32TasksNew, @),
} » Semaphore
RTCritSectEnter(&pThisCC->CritSectThrd),
if (pThis->crcr & XHCI_CRCR_CRR] » Woke up when o
xhciR3ProcessCommandRing(pDevIns, pThis, pThiscCC); command Is sent by
}_ R the guest

© 2023 REverse Tactics. All Rights Reserved.

Explolt

Use arbitrary write to overwrite the XHCI thread’s stack
Target the stack frame of the function waiting on the semaphore
Overwrite the saved RIP

Trigger the wake up of the XHCI thread by sending a command

Thread jumps to arbitrary location

Bypass CFG

Only controls dynamic calls

Not the saved RIP on the stack

ROP to shellcode |
WIN |

© 2023 REverse Tactics. All Rights Reserved.

Demo

- - Oct 12 05:11 20 dn 40

[+1 root@user-1-2: /home/user Q

root@user-1-2: /home/user# uname -3
Linux user-1-2 6.5.0-9-generic #9-Ubuntu SMP PREEMPT DYNAMIC Sat Oct 7 01:35:40 UTC 2023 x86 64 x86 64 x86 64 GNU/Linux

ﬁ root@user-1-2:/home/user# ./exploit runl

A
3

| | Qe w ¢ =i Gl @ cTr prROITE

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

Pwn20wn Vancouver 2024

Exploit fully written in Python
100% stable

Chained with a Windows privilege escalation for Pwn20wn

Had a full win !
Lucky: picked first in the random draw

No bug collisions

SUCCESS - Bruno PUJOS and Corentin BAYET from REverse Tactics ((@Reverse Tactics)
combined two Oracle VirtualBox bugs - including a buffer overflow - along with a Windows
UAF to escape the guest 05 and execute code as SYSTEM on the host O5. This fantastic

research earns them $90,000 and 9 Master of Pwn points.

© 2023 REverse Tactics. All Rights Reserved.

Conclusion

Fast and fun project

Lasted a month Iin total
Learned a lot on virtualization

Improved my tooling

VirtualBox is a great soffware to learn about VM escapes
Open source and easy o read code
There is still some bugs fo found

Can win a nice bounty at Pwn20wn !

© 2023 REverse Tactics. All Rights Reserved.

© 2023 REverse Tactics. All Rights Reserved.

https://www.linkedin.com/company/reverse-tactics/
https://twitter.com/Reverse_Tactics
https://www.reversetactics.com/
https://www.reversetactics.com/

